The Review of Accounting Information Systems

Volume 4, Number 1

An Integrated Auditing Architecture
For Internet And

Information System Design
Under A CORBA Environment

Fengyi Lin, (E-mail: fylin@public.iis.sinica.edu.tw) Chih Lee College of Business, Taipei, Taiwan
Deron Liang, (E-mail: drliang@iis.sinica.edu.tw) Academia Sinica Taipei, Taiwan
Soushan Wu, National Chiao Tung University, Taipei, Taiwan
Ray M Yang, Trade-Van Information Services Company, Taipei, Taiwan

Abstract

This article proposes Integrated Auditing architecture (IA architecture) on the Internet
with three emerging information technologies, namely objected oriented technologies,
distributed middleware and Internet security technologies. This IA architecture provides
an infrastructure for software components interoperating in a heterogeneous environ-
ment. Under an IA architecture environment, it is possible for auditors to encapsulate
“legacy” EDP system with a standard interface. Furthermore, we discuss to what extent
this IA architecture may expand Computer-assisted auditing techniques (CAATs) on the
Internet. For concept verification, a prototype system based on the proposed IA archi-

tecture is illustrated in this article.

1. Introduction

rganizations everywhere are under tre-

mendous pressure to evolve their elec-

tronic data processing (EDP) systems so
that they can better respond to marketplace de-
mands and rapidly changing technologies. Since
EDP systems have been widely used in business
to manage their daily business transactions and
strategic accounting records, auditors’ roles have
changed along with the complexity of the tasks
they must perform [2,3,4]. These changes have
created major challenges in performing the
auditing and attestation function to evaluate
auditees’ EDP systems [29,40] (1) Organiza-
tions’ accounting records are kept in electronic

Readers with comments or questions are encour-
aged to contact the authors via e-mail.

69

form, which is readable only to computers. In
response to this, auditors must reevaluate tradi-
tional evidentiary paradigms as the audit trail
moves from paper to magnetic media [28]. Fur-
thermore, auditors are forced to identify and im-
plement controls to ensure that transactions are
processed accurately, completely, and with the
proper approvals and audit trails [2,4,30,39]. (2)
The advent of a variety of hardware and soft-
ware platforms has allowed numerous organiza-
tions to develop their own proprietary software
or accounting applications [1,18]. Under this
heterogeneous and fast-paced environment,
auditors must always face the problem of how to
cope with auditees’ endless new software re-
leases, and stave off hardware and software ob-
solescence. EDP auditing has become difficult

The Review of Accounting Information Systems

Volume 4, Number 1

and time consuming. In response to these chal-
lenges, auditors have developed CAATs to deal
with traditional audit functions and begun to use
advanced technologies in support of auditing
[6,11,15,19]. For example, generalized audit
software (GAS) can process some files and file
type e.g. dBase, DIF, ASCII, spreadsheets and
various word processing packages [1,2]. GAS
also enables auditors to access useful information
on client master files that are not included in re-
ports produced by the client. Other examples of
CAATs are the use of continuous monitoring
systems such as SCARF or concurrent embedded
modules that target financially significant risk
areas and subject transactions to reasonable test-
ing [13,21]. Instead of using technologies to re-
port on past events, the above technologies can
be developed and implemented at the design
stage of an EDP system in order to detect and
report unusual or suspicious transactions at the
time they are processed through the EDP sys-
tems [13,19,38].

Although there is a clear necessity to
increase the scope of audit coverage in areas of
high organizational risk, there are surprisingly
few cost-effective alternatives available [35].
Most EDP systems currently in use are closed
mainframe systems. Each system has its own
proprietary operating systems, application pro-
grams, and data files. It is very difficult to ex-
change information from one system to another.
As a result, it is nearly impossible to design one
GAS to audit all EDP systems [2,5]. In addition,
current computers are inter-connected within the
heterogeneous network environment of LANS
and WANSs (such as Ethernet, FDDI, and ATM)
where the different protocols and characteristics
restrict auditing software reusability, portability
and interoperability. Development teams of IS
auditors have had to create the same functional-
ity over and over again under different EDP
systems, which wastes time and money. For
other concurrent CAATSs, early involvement of
auditors at the time when the system is under de-
velopment becomes necessary. Furthermore, this
will increase the requirement for software spe-

70

cialists. A 1996 survey showed that a majority of
internal auditors believed software technologies
could enhance the role of internal audit depart-
ments in the monitoring, control, and assessment
of risk [10,26,28]. We believe that the imple-
mentation these advanced auditing applications
will be more cost-effective if new technologies,
such as object-oriented technologies and distrib-
uted middleware standards, are effectively ap-
plied.

In order to perform reliance quality and
reliability in EDP auditing under today’s hetero-
geneous computing environment, auditing appli-
cations must work on a variety of hardware and
software platforms and they must be able to in-
teroperate legacy systems and make use of ex-
isting infrastructures [16,32,37]. Distributed
middlewares provide opportunity to “glue” many
heterogeneous systems with one common layer
[7,12]. This common layer defines standard ap-
plication interfaces as well as standard data
structures. Therefore, it becomes possible for
auditors to design one single self-designed audit
software to access and analyze auditee’s data via
distributed middlewares. Object-oriented tech-
nology can make distributed system design easier
and provide high level abstractions. Object-
oriented technique is also the mechanism for de-
fining the methods of “plug and play” (PnP).
Auditors, with limited computer backgrounds,
can develop and modify the audit modules inde-
pendently from the auditee’s EDP system design.
This eliminates the need for early involvement in
the clients’ EDP systems and assistance from
computer software specialists.

With object-oriented technology and
distributed middlewares or, as we call it -- dis-
tributed objects, auditors can improve the
interoperability, reusability, extendibility and
portability in a heterogeneous environment. Con-
sequently, we propose an Integrated Auditing ar-
chitecture with the support of emerging tech-
nologies -- distributed object technologies such
as CORBA ORB or DCOM to provide an infra-
structure for software components inter-

The Review of Accounting Information Systems

Volume 4, Number 1

operating in a heterogeneous environment.

This article is divided into five sections.
In the next section, we provide an overview of
IA architecture with emerging information tech-
nologies that could facilitate IA architecture on
the Internet. Section 3 of the article provides a
step by step demonstration of how this IA archi-
tecture can be facilitated based on CORBA mid-
dleware. Section 4 offers two examples to illus-
trate the advantage of IA. The last section will
discuss the challenges and future research op-
portunities in IA architecture implementation.

2. Integrated Auditing Architecture

Figure 1 is a high-level graphical repre-
sentation of the IA architecture that is comprised
of three major advanced technologies: distributed
middleware, object-oriented technologies, and
Internet security technologies. The structure and
composition of the architecture are described in
more detail in the following sections.

2.1 Distributed Middleware And Object-
Oriented Technologies

. The primary goal of this IA architecture
is to take advantage of distributed object tech-
nologies (a combination of distributed middle-
ware and object-oriented technologies) to pro-
vide an infrastructure for software components

interoperating in a heterogeneous environment
[17,31].

Distributed middleware technology can
support an open and programmable environment
for flexible developing auditing applications.
“Open” means that there are some public Appli-
cation Programming Interfaces (APIs) which can
be invoked by programming languages for the
high-level control and management of the un-
derlying resources. The EDP systems of most
organizations have their own proprietary oper-
ating systems, application programs, and data
files. In the past, auditors in the heterogeneous
environment had limited ability to communicate

71

(interact) with their auditees. Under the IA ar-
chitecture, auditors can access different auditees’
accounting information with the same API or
standard interfaces. Therefore, auditors can look
into computer data files and do data extractions
and analysis by themselves without interference
by auditee’s EDP systems. In addition, auditors
then can design one special CAATS to review all
of its auditees” EDP systems.

Moreover, distributed middleware pro-
vides an infrastructure that enables invocations
of operations on objects located anywhere on a
network as if they were local to the application
using them. The location transparency feature
and programming transparency further provides
auditors the ability to conduct an audit from a
remote site and set checkpoints for important in-
ternal controls as well. The idea is to provide
auditors with a transparent access to auditees’
accounting information and audit evidence any-
where on the LAN or WAN from any desktop.

Object-oriented technology has been
gaining popularity in recent years as a means for
constructing large-scale software systems. Pro-
grammers can easily decompose a system into
well-structured entities in distributed programs.
Therefore, object-oriented technology can make
distributed system design easier and provide high
level abstractions. There are three magical prop-
erties that make them incredibly useful: inheri-
tance, encapsulation, and polymorphism - which
allow the creation of reusable and extendible
object [8].

e Inheritance: Inheritance is the automatic
passing of properties or characteristics from
a parent or ancestor to a child. Child classes
inherit their parent’s methods and data
structures. Reusable code is stored in a re-
pository rather than expressed repeatedly.
Due to the inheritance feature, the IA archi-
tecture can provide reusability and extendi-
bility for the audit software. This mecha-
nism can save a lot of time and costs for the
designers and programmers.

The Review of Accounting Information Systems

Volume 4, Number 1

e Encapsulation: The object does this by hid-
ing its own resources with a public interface
that defines how other objects or applica-
tions can interact with it. It also separates
the user of an object from the author of the
object. The IA architecture can “encapsulate
legacy” EDP systems with standard inter-
faces. In other words, auditors can add or
remove any element without effecting exist-
ing auditees’ legacy systems.

e Polymorphism: Polymorphism is a highbrow
way of saying that the same method can do
different things, depending on the class that
implements it. Under this mechanism, you
can view two similar objects through a
common interface but eliminate the need to
differentiate between the two objects.

To simplify information access from the
ever-growing WWW, several object-based dis-
tributed middlewares have emerged. Microsoft’s
DCOM [17], OMG’s CORBA [14], and Java-
Soft’s RMI [33] are three of the most important
industry standards.

2.2 Internet Security Technologies

The standard interface, which defined
by, distributed middleware makes auditors easier
to access auditees’ EDP systems. However, this
move unfortunately exposes EDP systems to un-
controlled risks on the Internet community unless
sufficient security measures are installed. We
therefore propose to include a robust security
layer in the IA architecture as shown in Figure
1. The security layer provides variety functions
to guard not only the safety of the data stored in
the EDP systems but also the messages ex-
changed between two parties over the Internet
against malicious third parties [34]. These func-
tions include authentication, confidentiality, in-
tegrity, and non-repudiation.

Authentication

Authentication is a function that the re-

72

ceiver of a message (or the server of a request)
is able to ascertain its origin, i.e., the sender of
the message (or the client of the request). On the
other hand, an intruder should not be able to
masquerade as someone else. Authentication
process can be achieved by security technologies
such as digital certificate [34].

Confidentiality

Confidentiality means that only author-
ized people can see protected data, regardless of
these data are in a secured place or in transit.
This function is usually enforced by a number of
cryptography technologies. For example, logging
to EDP system is granted only by legal pass-
words. Retrieve sensitive information is subjec-
tive to proper access control. Various encryption
algorithms such as public-key [34] protect in-
formation transmitted over the Internet/intranet.

Integrity

A message receiver should be able to
verify that the message has not been modified in
transit; an intruder should not be able to substi-
tute a false message for a legitimate one. The
function of integrity can be achieved via various
security technologies such as message digests
[34].

Non-Repudiation

Non-repudiation is a function that a
sender must not falsely deny later that he/she
sent a message. In the context of the IA archi-
tecture, non-repudiation implies that a document,
such as financial statement which auditors re-
trieve from an EDP system via authorized inter-
faces over the Internet shall be considered as a
legal document. This document can be seen as
“send” out by organization’s EDP system. Non-
repudiation can be achieved by a security tech-
nology called digital signature [12,34]. In other
words, legal documents retrieved from the EDP
system via authorized interface are signed elec-
tronically with organizations’ digital signatures.

The Review of Accounting Information Systems

Volume 4, Number 1

The organizations can not “deny” later that they
did not issue such documents.

The advantages of IA with the possible

impact of IT on current auditing practices are as
follows:

3

Easy to use: It is possible for an auditor to
design one copy of GAS for all his auditees
since the information is at the auditor’s fin-
ger tips. Furthermore, auditors can develop
audit software at the auditor’s side inde-
pendently from the auditee’s EDP system
design. Traditionally, the audibility of a data
processing system is dependent on the un-
derlying system of controls that has been
built into the system during its development
[18,20]. Therefore, auditors must participate
in the systems development process to en-
sure that the necessary audit and control
features are built into auditee’s EDP system.
With IA architecture, auditors can independ-
ently design their own audit software

r’*th‘fr(}ugh standard component technologies

“such as CORBA and actively monitor
~auditees’ EDP systems.

Reliability: Auditors can access live account
data stored in various file formats that are
machine-readable only. This function will
place an increased level of reliance on the
auditing records (while accounting opera-

tions are being performed) instead of evi-
dence from related activities (e.g., prepar-
edness audits). Auditors directly access to
evidence can surely increase auditing reli-
ability [22,42].

Efficiency: Traditional auditing involves the
examination of auditees’ accounting records
substantially after the event and emphasizes
paper-based evidence [25,27]. IA architec-
ture may facilitate on-line tests of an internal
control with the next generation of informa-
tion technologies, such as PnP servets and
information interception through the Inzernet
[9,18]. Internal control checkpoints can eas-
ily shift control monitoring to the auditor as
previously programmed. Unlike concurrent
audit modules such as an embedded module
or SCARF [24,38,41] which require exten-
sive programming and testing to impact on
the auditee's EDP system with even a minor
change. The concurrent technique designed
under IA architecture can be adjusted in
seconds by auditors, with limited technical
background, through the programmed dis-
tributed objects and end-user computers.

Interoperability: IA architecture with dis-
tributed objects is capable of interoperating
across operating systems, networks, lan-
guages, applications, tools, and multivendor
hardware among various auditees’ EDP

rize the IA architecture feature:

IA architecture leading to a successful CAAT application must have a flexible software ar-
chitecture so that the software can be organized into components. The followings summa-

* Easy to use: one GAS for all auditees’ EDP systems.
* Reliability: data can be accessed separately, which can increase evidence reliability.
» Efficiency: separately deployed and developed audit software can increase efficiency.

Interoperability: auditing applications can work on a variety of hardware and software plat-
forms, and be able to interoperate legacy systems.

Table 1 Summarizes The IA Architecture Feature

73

The Review of Accounting Information Systems

Volume 4, Number 1

systems. An object bus provides a unified
system architecture that can be of tremen-
dous help to system integrators of organiza-
tion EDP systems.

3. CORBA implementation for IA architec-
ture

Previous section has demonstrated the
promising features of emerging technologies to
support our IA architecture. This section presents
CORBA implementation for IA architecture. Be-
cause object-based distributed processing has
been highly valued, Object Management Group
(OMGQG) is devoting itself to the standardization of
distributed object exchange, and CORBA is ex-
actly its first standard for distributed object ex-
change [14]. This application chooses CORBA as
distributed object technology for 1A architecture
because CORBA is considered an industrial stan-
dard. Under the CORBA environment, communi-
cation between objects is supported by CORBA
message passing technology. The overall structure
of CORBA is illustrated in Figure 2.

CORBA is the specification of the func-
tionality of the ORB, the crucial message bus that
conveys operation invocation requests and their
results to CORBA object residents anywhere, no
matter where they are implemented. The CORBA
specification provides certain interfaces to com-
ponents of the ORB, but leaves the interfaces to
other components up to the ORB implementers.
By standardizing the interfaces between the un-
derlying Object Request Broker (ORB) core, both
the Client and Object Implementation to specify
the manners of interactive object invocations.
When a service is invoked, the Client needs only
to hold a reference to the target object without
knowing where the object resides. The object bus
or ORB provides a unified system architecture
that can be of tremendous help to system inte-
grators of EDP systems. It should be equally easy
to invoke an operation on an object residing on a
remote machine, as it is to invoke a method on an

74

object in the same address space. In addition,
programming language transparency provides the
freedom to implement the functionality encapsu-
lated in an object using the most appropriate lan-
guage, whether because of the skills of the pro-
grammers, the appropriateness of the language to
the task, or the choice of a third-party developer
who provided off-the-shelf component objects.
The key to this freedom is to provide separation
of interface and implementation.

There are two steps to facilitate IA archi-
tecture based on CORBA middleware. The first
step is to gather background information on the
OMG GL Facility [35]. IA architecture takes ad-
vantage of the proposed OMG GL Facility and
further develops an algorithm for auditors to in-
teroperate with different auditees’ accounting
application in order to perform better audit
work. Therefore, the next step is to develop pro-
posed audit objects so that IA architecture can be
facilitated.

3.1 Introduction to OMG GL Facility

- Broad recognition exists regarding the need
to develop industry standards for accounting sys-
tems where differing protocols and applications
abound [4]. The OMG (Object Management
Group) General Ledger Facility (GL Facility) re-
cently submits proposed interfaces, and their se-
mantics, that are required to enable
interoperability between General Ledger systems
and accounting applications, as well as other dis-
tributed objects [35]. The OMG GL Facility is
conformant with international accounting stan-
dards for double entry bookkeeping. The GL in-
terfaces comprise a framework (in the object-
oriented sense), that supports the implementation
of accounting client applications, for example:
Accounts Payable, Accounts Receivable, Payroll,
and so forth. The architectural intention is to fa-
cilitate the convenient implementation of interop-
erable accounting applications, referred to as “cli-
ents” in this specification.

The Review of Accounting Information Systems

Volume 4, Number 1

Figure 3 illustrates the GL Facility for
auditee’s EDP system and basic interface struc-
ture of IA architecture. Under this IA architec-
ture, auditee’s EDP system employed the OMG
GL Facility to initiate its accounting life cycle

and ensure a controlled development and imple-
mentation. The innermost boxes of Figure 3 are
comprised of an OMG’s proposed GL Facility,
which contains 6 basic elements as shown in Ta-
ble 2.

Interface Purpose [Primary Client(s)
GLProfile Client Session Establishment 'All GL clients
GLBookKeeping Data entry Data entry clients
GLRetrieval Data extraction Reporting clients
GLAccountLifecycle Account lifecycle management GL administration clients
GLIntegrity Data integrity checks sL administration clients
GLFacilityLifecycle GL lifecycle management GL administration clients

Table 2: Synopsis of General Ledger Facility Interfaces
Source: SSI Ltd., et at. "General Ledger Facility”, OMG DTC Document finance/98-07-02,1998 [35].

Through utilizing the interfaces above, the
GL Facility can create the basic functions of
maintaining an organization’s accounting infor-
matiQn»system. The GL Facility specifies inter-
faces that encapsulate distributed object frame-
works ‘implementing accounting general ledgers.
The - most essential data structure/interface for
general ledger is an “Account™.

In order to illustrate more clearly on “Ac-
count”, we shall use an abstracted form of C
Language to define “Account” interfaces. The
GL Facility maintains additional state values for
GL accounts with their identifier and descriptive
name. The basic GL Account interface is defined
as follows:

struct Account {

wstring GLAcc_ref;
wstring GLAcc_name;
wstring GLreporting_code;
Currency default_currency;

Money balance;

Boolean is_control;

Money mth bal;

Money ytd_bal;

wstring con_acc_kind;
wstring con_acc_desc;
wstringList optional fields; };

// account name

/! GL Account reference

/] grouping code

Because object-oriented technology has the
function of inherence, we therefore expand the
previous GL Account Interface to specific ac-
counts such as Cash, Accounts Receivables, Ac-

75

counts Payables, Equity, Revenue and Expense
in Appendix A. All these accounts are special
designations of GL Accounts, that otherwise be-
have as “regular” accounts.

The Review of Accounting Information Systems

Volume 4, Number 1

3.2 Proposed Audit Objects

After understanding and implementing the
OMG GL Facility on auditees’ EDP systems, the
auditor should have gained an initial understand-
ing of both the organization’s accounting struc-
ture and how it affects the way in which the
auditor can directly access the accounting infor-
mation for all his auditees. In step 2, the auditor
can build his own audit objects such as bank con-
firmation, accounts receivables confirmation, in-
ventory counting sheet, bank reconciliation and so

on to cope auditee’s live data with auditor’s
needs. These audit objects allow the auditor to
improve his focus and scope of the audit.

This section gives definitions of CORBA
IDL interfaces as well as data structure that are
not defined in the GL Facility of OMG and are
purely for audit purposes. We use a confirmation
letter as an example to illustrate proposed audit
objects. The following is a CORBA interface
needed for a confirmation letter.

struct ConfirmationLetter {
wstring company_name;
wstring address;
Date date;
Money balance;
wstring account_type;
wstring cash_dep_type;
wstring cash dep acc_number;
wstring cash dep Interest Rate;
wstring cash dep balance;
wstring cash_debt_acc type;
wstring cash_debt balance;
wstring cash_debt_exp_date;
wstring cash_debt_interest_rate;
wstring cash_debt_thr which_int_is paid;
wstring cash_debt collateral;
Boolean is_postive;

/' (A/R, A/P, Cash)
/1 deposit data items for Cash type

/1 debt data items for Cash type

/1 if the letter is positive or negative

4. The Advantage Of IA Architecture

This section presents two auditing tests, one
is an internal control test and the other is a sub-
stantive test, to illustrate the advantage of IA ar-
chitecture. A typical purchasing transaction is
shown in Figure 4, This purchasing transaction
illustrates the role of IA architecture elements and
how the proposed architecture will potentially be
affected by (or affect) outside trading parties. We
assumed that all of the parties involve at this
transaction are supported with the CORBA GL
Facility. These examples will demonstrate how
auditors may make use of IA architecture to per-
form both an internal control test and a substan-
tive test. We also discuss how audit objectives can

76

be better achieved in a more effective and effi-
cient manner with IA architecture. The supporting
information technologies that correspond to each
step are included in the tables.

4.1 Perform Internal Control Test Under 1A
Environment

In performing any attestation function,
auditors continue to be responsible for ensuring
the stakeholders of the existence, adequacy and
functionality of internal controls [28]. The sce-
nario below shows how an auditor takes advan-
tage of IA architecture to perform an internal
control test. CPA L audits internal control of
Company D under IA architecture environment.

The Review of Accounting Information Systems

Volume 4, Number 1

With standard interface via a homogeneous ob-
ject bus over the Internet, CPA L can directly
access Company D’s Accounts Payable (A/P)
system anytime through proper authorization in
order to enhance the reliability of audit evidence.
This mechanism eliminates the needs for the
auditor to develop different specialized audit
programs to cope with the inconsistent file for-
mats of each auditee. Therefore, the auditor can
design one audit software program for all his
auditees’ EDP systems under IA architecture.

This example also shows that internal
control checkpoints could either be created in the
system or embedded in the system through use of
a portable code. For example, CPA L can set an
audit module with a PnP function on Company
D’s EDP system. If there is any A/P amount
over $100,000, the audit module will shift A/P
information back to CPA L’s computer. Audit
software will check whether the embedded port-
able code of the digital approval signature is
complete or not. The PnP function can also pro-
vide the-auditor

with information about when to start the audi
software in order to disclose exceptions and po-
tential frauds with distributed object infrastruc-
tures and high speed networks. This mechanism
accomplishes the same goals as other concurrent
CAATS such as embedded modules and SCARF.
However, embedding any audit modules into an
auditee's EDP system at early stage are no
longer required and modifying audit strategies
can be done locally.

CPA L can easily to access Company
D’s accounting information anywhere on the
LAN or WAN from any desktop. A single
search will be able to access documents in any
repository. Auditors can use the IA architecture
to conduct significant portions of an audit from
any location, including external offices, either
through direct system access or approved dial-up
access. The IA architecture also specifies multi-
level security based to ensure the authentication
of the users. The CORBA interfaces needed for
this example are Accounts Payable (A/P).

Business logic

Supporting Information Technology

1. CPA L loads the self-designed audit software to ac-
tively monitor Company D’s internal control test of
Accounts Payable (A/P) account via CORBA inter-
face.

. CPA L loads the PnP function of audit module to
implant proper checkpoints for A/P balance over
$100,000.

. The audit module will shift the A/P information back
to auditor’s office through CORBA.

. Upon receiving A/P information, audit software runs
locally to check if proper approval performed.

. The audit software prints an exception report and in-
forms CPA L immediately if there is any A/P ex-
ceeds $100,000 without proper approval.

2

4

5.

. Audit software.

. Confidentiality, integrity, non-

repudiation, PnP, and CORBA.

. PnP.

. Audit software.

Audit software, confidentiality, and
authentication.

77

The Review of Accounting Information Systems

Volume 4, Number 1

4.2 Perform Substantive Test Under IA Envi-
ronment

IA architecture can also support a sub-
stantive transaction testing. One of the examples
is the confirmation process. The confirmation
function more than likely will continue to be a
useful form of audit evidence, as long as auditors
require a substantive evidence of trading related
balances. This example illustrates how CPA L
can gather confirmation request data from Com-
pany D through CORBA standard interfaces and
send out the confirmation letters to the vendors
via prearranged secure channel directly. To re-
duce the manually intensive process, it may be

beneficial to electronically confirm transaction
through GL Facility/ CORBA.

We designed an auditor’s proprietary
interfaces for a confirmation letter, as shown in
the previous section. A confirmation request can
be prepared using audit software based on the
live data retrieved from the auditee’s EDP sys-
tem. Conceptually, the confirmation response
would function like an application acknowledg-
ment, except that the acknowledgment is sent to
the auditor rather than to the trading partner. If
no exceptions are noted, it could be automated.
The CORBA interfaces needed for this example
are Accounts Payable and Confirmation Letter.

Business Logic

Supporting Information Technology

ules.

8.

name, address, invoice number(s),

account via CORBA interfaces.

Signature of Company D.
5. Send the confirmation letters to the vendors
through CORBA middleware.

N o

. Wait for replies from vendors.

1. Get all A/P information from Company D via its
CORBA interfaces (GLRetrieval) through audit mod-

For each vendor in the account A/P, performs Steps 2-

2. Retrieve information from A/P account for a typi- |2
cal confirmation letter, that includes vendor’s

account bal-
ance, due date, and transaction description, etc.

3. Get year-to-date balance of each vendor from A/P|3

4. Prepare the confirmation letters and get Digital

. Repeat until all confirmation letters are sent out.

8. Examine the replied letters from Company D’s
vendors. Prepare an exception report if needed.

1. Authentication, confidentiality, PnP and
CORBA.

. Confidentiality, integrity, non-repudiation,
PnP and CORBA.

. Confidentiality, integrity, non-repudiation,
and CORBA.
. Non-repudiation.

~

5. E-mail, EDI, or other internet technology.

IA architecture offers numerous poten-
tial benefits. Automated confirmation process or
similar substantive tests can save time for audi-
tors and increase the reliability of audit evidence.
Electronically review for special transactions pe-
riodically avoids interruptions to normal

78

workflow and stores important audit trails.
Travel and research costs are reduced. Auditing
efficiency is increased because CPAs and audit
supervisors can review audit progress from re-
mote locations whenever needed.

The Review of Accounting Information Systems

Volume 4, Number 1

5. Conclusion

In this paper we identified three
emerging information technologies to constitute
software architecture to facilitate IA. The tech-
nologies include object-oriented technologies,
distributed middlewares, and Internet security
technologies. We also expanded an established
OMG GL Facility from the field of accounting to
auditing.

The architecture described in this paper
elaborates the steps to facilitate integrated audit-
ing concepts and design effective objects for
auditing. For the purpose of concept verification,
we presented a prototype EDP system based on
CORBA standards, a well-known object-oriented
distributed middlewares from OMG. This system
emulates an internal control test and a substan-
tive test where it supports OMG’s General
Ledger Facility.

By using IA architecture, auditing soft-
ware is no longer constrained by the nature of
the hardware platforms being used, the informa-
tion processing applications being examined, or
the types of examinations being performed. The
use of IA architecture provides a convenient way
for the auditor to implement audit procedures
through the computer, not around the computer.
With proper audit module (PnP) design, system
alarms and reports can call the auditor’s attention
to any deterioration or anomalies in the auditee’s
EDP systems. Moreover, audit software can be
designed and deployed at the auditor side inde-
pendently from the auditees' EDP systems.
Therefore, it does not suffer from drawbacks as
concurrent CAATS.

6. Suggestions For Future Research

We have outlined IA architecture to integrate
three different technologies for auditors. Future
research can identify specific audit objects that
will be useful in different industrial situations.
Some questions of interest that may need re-
search are (a) what are the benefits of integration

through workflow management in IA architec-
ture [24]? (b) Which technologies are most use-
ful for promoting integration in auditing imple-
mentation? And (c) the issues of legal and regu-
latory evidentiary requirement, records retention
and disaster recovery [28].EJ

7. Reference

1. American Institute of Certified Public Ac-
countant, Computer Assisted Audit Tech-
niques, AICPA, New York (1979).

2. American Institute of Certified Public Ac-
countant, Auditing with Computers,
AICPA, New York (1994).

3. American Institute of Certified Public Ac-
countant, Auditing in Common Computer
Environments, AICPA, New York (1995).

4. American Institute of Certified Public Ac-
countant, Information Technology Age:
Evidential Matter in the Electronic Envi-
ronment, AICPA, New York (1997).

5. American Institute of Certified Public Ac-
countant, Analytical Procedures, AICPA,
New York (1997).

6. American Institute of Certified Public Ac-
countant, The IT Committees' Top 10 List,
Journal of Accountancy 183 (2 (February))
(1998).

7. J. Birtcher, Auditing client/server informa-
tion processing, EDPACS 22 (8 (February))
(1995) 1-4.

8. G. Booch, Object-oriented Design with Ap-
plications, The Benjamin Cumings Publish-
ing Company, Inc. (1991).

9. B. Brown, Audit and Control of Electronic
Funds Transfer, EDPACS 23 (10 (April))
(1996) 1-6.

10. Steven P. Casazza and Mark Magath, Con-
tinuous Monitoring of Application Systems,
IS Audit & Control Volume 5 (1998) 21-25.

11. J. 1. Cash, A. D. Bailey, Jr. and A. B.
Whinston, A survey of techniques for
auditing EDP-based accounting information
systems, Accounting Review 3 (4 (October))
(1977) 813-832.

12. S. Chan, Managing and auditing EDI sys-
tems development, CMA 65 (November)

The Review of Accounting Information Systems

Volume 4, Number 1

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

(1991) 12-15.

D. Coderre, Broadening the Audit Scope
with Computer-Assisted Audit Tools and
Techniques, EDPACS 14 (8 (February))
(1997) 1-15.

The Common Object Request Broker: Ar-
chitecture and Specification, Revision 2.0,
Jul. 1995,
http://www.omg.org/corba/corbiiop.htm.
B. E. Cushing and M. B. Romney, Ac-
counting Information Systems-A Compre-
hensive Approach, 5" ed. Addison-Wesley
(1990).

D. R. Carmichael, J. H. Willingham, and
C. A. Schaller, Auditing Concepts and
Methods-A Guide to Current Theory and
Practice, 6™ ed., McGraw-Hill, (1996).

The Component Object Model Specification,
http://www.microsoft.com/oledev/olecom/tit
le/htm.

M. Donahue, Entering a New Era in IS
Audit and Control, EDPACS 21 (12 (June))
(1994) 1-5.

C. Fritzmeyer and Carmichael, ITF: a
promising computer audit technique, Journal
of Accountancy, (February) (1973) 74-58.
M. Fischer, EFT: Controlling the Risk”,
Journal of Accountancy,(June,1988)130-131
R. J. N. Gascoyne, CAATs it if you can
(auditing), CA Magazine, 110 (June) (1992)
38-40.

Glenn L. Helms, Top Technology Concerns
for the Attest, Audit and Assurance Services
Functions, IS Audit & Control Journal 2
(1999) 46-48.

J.V. Hansen, and N. C. Hill, Control and
Audit of Electronic Data Interchange, MIS
Quarterly (December 1989) 403-414.

Peter van Helden and Andre Lighthart,
Workflow Management in SAP R/3, a New
era in Automated Business Process Man-
agement? IS Audit & Control Journal 3
(1997) 46-50.

R. Hoffman, Micros in Accounting, Journal
of Accountancy (September 1988) 146-150.
Barry Knaster, Trial Balancing Act, Ac-
counting Technology (June 1998) 23-32.

80

27

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

R. B. Lanza, Take My Manual Audit,
Please, Journal of Accountancy (June)
(1998) 33-36.

R. F. Lucy, Electronic Document Manage-
ment: an Internal Control Paradigm Shift, IS
Audit & Control Journal 5 (1997) 31-35.

T. W. Lin, and D. C. H. Yang, The use of
microcomputers in auditing- a survey, EDP
Auditor Journal 4 (1990) 73-80.

B. McKinzie, Understanding and Using
Audit Trails, EDPACS 21 (13 (July)) (1994)
6-15.

R. Powell, Auditing Electronic Funds
Transfer, IS Audit & Control Journal 2
(1994) 48-51.

D. Prawitt, M. Romney, and S. Zarowin,
The Software CPAs Use, Journal of Ac-
countancy183 (2 (February)) (1997).

Java Remote Method Invocation Specifica-
tion, Revision 1.42, JDK 1.2, Javasoft Ltd.,
Mountain View, CA USA. (October 1997).
Bruce Schneier, Applied Cryptography -
Protocols, Algorithms, and Source Code in
C, John Wiley and Sons Inc., New York
(1996).

SSI Ltd., et at. General Ledger Facility,
OMG DTC Document finance/98-07-02,
(1998).

R. Watson, The Use of Microcomputers in
the Audit Environment, The EDP Auditor
Journal 1 (1988) 31-42.

Myles Walsh, Why Software Continues to
Cost More—and what the is auditor can do,
EDPACS (May) (1994) 8-15.

Ron Weber, “Information Systems Control
and Audit”, Prentice Hall, New Jersey,
USA. (1999).

H. Will, The New CAATSs: Shifting the
Paradigm, EDPACS 22 (11 May,1995) 1-14
A. L. Williamson, The Implication of Elec-
tronic Evidence, Journal of Accountancy
183 (2 (February)) (1997).

D. A. Watne and P. B. B. Turney, Auditing
EDP Systems, 2™ ed., (1990)

C. Zoladz, Auditing in an Integrated EDI
Environment, IS Audit & Control Journal 2
(1994) 36-40.

.

VAt pme g

The Review of Accounting Information Systems

Volume 4, Number 1

Appendix A. Related CORBA General Ledger Interfaces

This section gives definitions of CORBA IDL interfaces as well as data structures that are basic accounting
objects and used in the examples of internal control test and substantive test but not defined in the GL Facility of
OMGT41]. These interfaces are designed for EDP systems commonly used in the manufacture industry.

interface GLProfile;

interface GLBooKeeping;
interface GLRetrieval;
interface GLAccountLifecycle
interface GLIntegrity;
interface GLFacilityLifecycle

typedef Fdcurrency: :Date Date;
typedef Fdcurrency: :Money Money;
typedef wstring Currency;

enum AccountType{
Cash,
Accounts Receivable,
Accounts Payable,
Equity,
Revenue,
Expense,

typedef sequence,AccountType. AccountTypeList;

interface = GLRetrieval {
CashInfoList
AccountsReceivableInfoList
AccountsPayableInfoList
EquityInfoList
RevenuelnfoList
ExpenselnfoList

interface GLProfile {
GLRetrieval gl retrieval(); };

struct Account {

wstring GLAcc_ref;
wstring GLAcc_name;
wstring GLreporting_code;
Currency default_currency;
Money balance;

Boolean is_control;
Money mth_bal;

Money ytd_bal;

wstring con_acc_kind;
wstring con_acc_desc;
wstringList optional_fields;

81

/1 establish client session

// information entry

/I information acquisition

/I account lifecycle management
/I information integrity checks
//GL lifecycle management

cash();
accounts_receivable();

accounts_payable();

equity();

revenue();

expense(); Y

/I GL Account reference
/] account name
/I grouping code

The Review of Accounting Information Systems

Volume 4, Number 1

struct Cash{

Account
Date
wstring
wstring
wstring
wstring
Money
Boolean

wstringList summary;

struct AccountsReceivable{

Account
Date
wstring
Money
Boolean

wstringList summary;

struct AccountsPayable

Account

Date

wstring

wstring

wstring

Date

Money

Boolean

wstringList summary;

struct Equity{
Account
Date
wstring
Money
wstringList

struct Revenue({
Account
Date
wstring
Boolean

wstringList summary;

struct Expense{
Account
Date
wstring
Boolean

wstringList summary;

basic_acc; /1 basic account information
date;
client_name;
bank_account_number;
bank account_type;
bank_interest_rate;
beginning_balance;
is_debit_credit;
/I description about bank’s names, etc.};

basic_acc; // basic account information
date;
client_name;
beginning_balance;
is_debit_credit;
/I description of clients’ information, etc.};

basic_acc; // basic account information
date;
vendor_name;
address;
year_to_date_balance;

payment_date;
beginning_balance;
is_debit_credit;

/I description about vendors’ information, etc. };

basic_acc; /1 basic account information
date;
stockholders’_name;
beginning_balance;
summary; /1 description about stockholders’ information,

etc.};

basic_acc;
date;

client_name;

is_debit_credit;

// basic account information

/I description, revenue type, etc.};

basic_acc; /1 basic account information
date;

client_name;

is_debit_credit;

/I description, expense type, etc.};

82

2.1n32971yday Sunipny pajeasajuy :] dan3ig

110doy npny

JouIauy

vdd00

ooRJION] /o
plepuels

srdroutid 1pny

pajusLI0
-123[q0

finqeradoxauy p
Kouaroyyq -9
Anmiqenay 'q

asn 0} Aseq ‘e

A1Imoas
JoUIdU]

waIsAs Jad
NPy

Common Facilities

Application Objects

Object Request Broker(ORB)

Object Services

Figure 2: OMG’s COBRA Structure

GL Facility

Accounts

CashInfo

CashInfoList
AccountsReceivableInfo
AccountsReceivableInfoList
AccountsPayablelnfo
AccountsPayableInfoList
EquityInfo
EquityInfoList
Revenuelnfo
RevenuelnfoList
Expenselnfo
ExpenselnfoList

ConfirmationLetterInfo
CountingSheet

Figure 3: Structure Of OMG GL Facility

The Review of Accounting Information Systems Volume 4, Number 1

Company D CPA L
Accounts

Audit
Software

A/P Cash N\

CORBA
A .
GL Facility/ CORBA

S

Audit Module (PnP)

GL Fagility/ CORBA
v
A/R — Examplel
......................... Example2
Vendor

Figure 4: Implementation Of IA Architecture

86

