The Review of Accounting Information Systems

Accounting Database Design And
SQL Implementation Revisited

David H. Olsen, (E-mail: dolsen@b202.usu.edu), Utah State University

Abstract

This paper extends previous work in the context of database design in the accounting
area and illustrates the power of the Structured Query Language (SQL) with more ad-
vanced business and accounting examples. In the past five years, SQL has become a
driving force in the database arena because it is the standard method of extracting
information from the database. With the increasing importance of the Internet, de-
mand for persons with SQL skills is axiomatic because database systems are fre-
quently the backend structure that support ecommerce websites. Database technology
is also critical for operations and for data warehousing with implications for account-
ants because they have the business skills to interpret data and to know what informa-
tion is critical for many types of decision making. We contend that accountants with
savvy technical skills and a fundamental understanding of SOL will be properly posi-
tioned in the competition to be effective information providers. In this paper, we use
the same group of generic business and accounting-related entities as we used in the
first article. The basic design provides the basis for a set of six relational tables with
sample data. These tables provide the basis for ten advanced SOL statements that are

Volume 4, Number 2

designed to illustrate the power and usefulness of SOL for accountants.

Introduction

n many ways, the accounting profession is

at a crossroads. Either accountants will
embrace information systems technology
and use it to leverage their considerable infor-
mation advantage, or they will risk becoming in-
significant and will lose market share to infor-
mation systems persons that have familiarity with
accounting precepts. Because of that risk, ac-
countants are taking a new look at the profes-
sion, and many are adapting to the changing en-
vironment. Accountants must move from the
role of exclusively preparing information to the
roles of designers, managers, and auditors of
database systems.

Readers with questions or comments are encour-
aged to contact the author via e-mail.

53

In order to fulfill these additional roles, ac-
countants should have considerable database
knowledge as well as specific knowledge of the
structured query language (SQL). SQL is criti-
cal because it is the standard database language
that transcends platforms and database manage-
ment systems (DBMS). DBMS products such as
Access, Oracle, DB2, Sybase, Informix, and
SQL Server include an SQL component that is
used to accomplish tasks such as table creation
and answering ad hoc questions.

Some might argue that graphical user inter-
faces (GUI) or web-based interfaces should be
used for these tasks, but these tools are too weak
for advanced queries, and they tend to be pro-
prietary. Proprietary tools have historically been

The Review of Accounting Information Systems

Volume 4, Number 2

a problem because the standards change and new
proprietary tools must be learned. In contrast,
SQL is stable, includes a standards governing
body, and is robust and powerful.

This paper extends the work in Olsen(1999)
that included a description of a database design
in the context of an accounting example. This
paper includes several advanced SQL statements
that are salient to accountants.'" An increased
knowledge of database management is important
for the survival of practicing accountants. This
knowledge should include a familiarity of entity
relationship (ER) modeling, table normalization,
query concepts, and SQL.

This paper continues with a review of some
of the accounting database literature in Section
II. Section III is an introduction to a standard,
simplified database design that supports basic
business functions. The entities that are derived
from the basic business design in Section III are
the basis for the normalized tables that are used
throughout the rest of the paper. In Section IV,
a set of advanced SQL examples that are ger-
mane to accounting are presented and explained.
The examples that were selected make use of the
more advanced SQL techniques as well as an-
swer some common accounting questions. These
advanced techniques should benefit accountants
as they will have a more powerful tool to use
when they are compiling and interpreting infor-
mation. Section V concludes with a discussion
of the future of databases and SQL in account-
ing.

Review Of Accounting Database Literature
A principal understanding of database con-

cepts has historically been important in the ac-
counting profession. For example, the AAA

'The queries in this paper were tested and exe-
cuted in Microsoft SQL Server 7.0 though some
differences with Access 2000 are noted. The
queries in the first paper were tested and exe-
cuted in Access 97.

54

Committee on Contemporary Approaches to
Teaching AIS (AAA, 1986) recommended that
instructors include substantial coverage of data-
base topics in their AIS courses. The extent of
database coverage recommended by the Com-
mittee includes 1) data coding, 2) file/record de-
sign, 3) batch/on-line processing, 4) data struc-
tures and file organization, 5) database organi-
zation, 6) conceptual data modeling, 7) defining
database requirements, 8) model databases, 9)
extracting data from databases, and 10) mainte-
nance procedures.

Olsen and Calderon (1996) reported on a
more contemporary list of database management
systems topics and concepts that included a sur-
vey to AIS instructors. Those topics are listed in
Table 1.

The rationale for proficiency using database
management systems (DBMS) is evident from
the changing role of accountants as information
providers in business and industry. While ac-
countants are still very important providers of fi-
nancial information to managers and parties ex-
ternal to a business enterprise, their role is rap-
idly changing (Elliott, 1994). Managers, inves-
tors, and others now have significantly greater
access to sophisticated databases and can query
those databases directly to obtain timely custom
reports. The accountant’s role then seems to in-
clude more systems analysis and design as well
as supporting querying the information system.

Olsen and Kimmell (1998) reported on ad-
vanced database technologies that are either be-
ginning to be used or that may be used in the ac-
counting profession. These technologies include
1) object-oriented databases, 2) Internet data-
bases, 3) data warehousing, 4) data mining, 5)
active databases, and 6) business rules. These
advanced technologies have important implica-
tions for accountants because they will be the ba-
sis for future accounting systems. Accountants
skilled in these areas will be nicely equipped for
the future systems.

The Review of Accounting Information Systems

Volume 4, Number 2

Table 1 - List of Database Concepts

Alternative database models -- Hierarchical model

Alternative database models -- Network model

Alternative database models -- Relational model

Alternative database models -- Object-Oriented model

Auditing databases

Basic terminology -- attribute (field)

Basic terminology -- entity (record)

Basic terminology -- table (file)

Basic terminology -- transactions

Concurrency control

Data/entity relationships -- one-to-one relationships

Data/entity relationships -- one-to-many relationships

Data/entity relationships -- many-to-many relationships

Data flow diagrams

Data dictionaries

Database management systems software packages

Database administration

Database security

Entity integrity

Entity-Relationship models

Evaluation of databases

General controls for the overall information system

Information systems strategic planning

Information systems user needs and requirements analysis

Network and distributed databases

Normalization -- first normal form

Normalization -- second normal form

Normalization -- third normal form

Normalization -- Boyce Codd normal form

Normalization -- fourth normal form

Normalization -- fifth normal form

Querying a database

Referential integrity

Relational operators

Specific controls for individual applications

Structured Query Language (SQL)

Transaction management

55

Database Design And SQL Examples

The following six generic entities are com-
mon to most business and are the basis for this
presentation: (1) Customers (2) Orders (3) Line
Items (4) Inventory (5) Vendors and (6) Ship-
ping.

Figure 1 is an Entity Relationship (ER) dia-
gram that conforms to the rules defined by Chen
(1976) that illustrates the relationships between
the six entities. The Customers entity simply
represents customers with the attributes that must
be captured. Appropriate customer attributes in-
clude the customer’s name, address, phone num-
ber, etc., and are listed in the table definitions in
Appendix A. The Orders entity represents or-
ders that have been placed by customers who al-
ready exist in the system. The customers and
the orders have a one-to-many (1-M) relation-
ship, which means that a customer can place
many orders and that an order is placed by a sin-
gle customer. Alternatively, the 1-M relation-
ship is sometimes referenced as a parent-child
relationship. Figure 1 then includes the number
1 by the Customer entity and an M by the Orders
entity.

Similarly, the Orders entity has a 1-M rela-
tionship with the Line Items entity. This means
that a given order may have several line items,
but a single line item belongs to one order. This
allows for an Order to contain many different
pieces of inventory of varying quantities.

This design also shows a 1-M relationship
between the Inventory entity and the Line Items
entity, which means that a single type of inven-
tory can appear on many different line items and
that a Line Item includes only one type of in-
ventory.

A 1-M relationship also defines the Vendor
and the Inventory entities, which means that a
vendor can supply numerous different types of
inventory and that a type of inventory is supplied
by a single vendor. This is admittedly simplistic

—

Customers
Key Data-
Customer_ID [PK1]
Non-Key Data————|
Name
Address
City
State
Zip
Phone
Fax
Internet

Figure 1
Generic Business ER Diagram

Orders
Key Data:
Order_ID [PK1]

Non-Key Data-
Customer_ID
Invoice_Date
Invoice_Amount
 Amount_Due
Amount,_Paid
Paid_In_Full

-

(Vendors

Key Data:
Vendor_ID [PK1]
Non-Key Data-

Name
Address

'Vendor_Logo
Ship_ID

1

Inventory
Key Data-
Inventory_ID [PK1]

Non-Key Data————|
'Vendor_ID

Description

Color

Cost

Price

‘Weight

-

The Review of Accounting Information Systems

Volume 4, Number 2

because most organizations would want to have
the option of ordering the same types of inven-
tory from different vendors. Some of the rela-
tionships were simplified in order to make these
examples manageable.

The final relationship is the one between
the Vendors and Shipping entities. We state that
a vendor chooses to ship goods with a single car-
rier such as UPS or Federal Express. To that
end, a vendor uses one method of shipping, and
a shipper services many vendors. We thus ob-
serve a 1-M relationship between the Shipping
and Vendors entities.

This query displays the order number, date,
and amount for all inventory items that are
white. This is a good example of a subquery,
which is essentially a query within a query. To
understand a subquery, it is easier to read it from
the bottom select statement and proceed upward.
For example, the innermost select statement re-
turns all inventory numbers (i_num) for inven-
tory that is white. The next select statement,
then, is only considering white inventory when it

searches for order numbers (o_num) from the
Lineltem table. The outermost select statement
displays the order number, order date, and the
invoice amount for the orders which include in-
ventory items that are white.

This query makes use of the “IN™ operator
before each sub-query. An “IN” operator must
be used in place of the “=" operator if the sub-
query is going to return more than one value in
the answer; otherwise, this query would return
an error.

Subqueries are valuable for answering
questions that have values in separate tables and
are often used instead of joins to improve the
speed of the query.

The answer here is simply the Orders table
with up-to-date values in the invoice amount at-
tribute. Many arguments have been presented
against storing derived attributes as we do in this
example. In fact, the general rule of thumb is
not storing derived attributes without a good rea-
son, which is usually related to performance.

SQL Examples

the color of an order item is white.
Answer:

SELECT o_num, o_date, i_amt
FROM Orders

FROM Lineltem

FROM Inventory

Example 1 -- Find the order number, date, and invoice amount from the Orders table where

WHERE o_num IN (SELECT o_num
WHERE i_num IN (SELECT i_num

WHERE color = 'white"));

o num o date 1 amt
1598 1999-02-12 00:00:00.000 86.0000
1693 1999-03-06 00:00:00.000 204.0000

57

The Review of Accounting Information Systems

Volume 4, Number 2

Example 2 - Update the invoice amount in the
Orders table from the individual line items in
the Lineitem table.

Answer:
SELECT o num, SUM(total line item) AS
i amt INTO partl

FROM Lineltem
GROUP BY o_num;

Partl (The temporary table)

0 num i amt
0145 424
0298 142
0342 24
0711 200
1267 110
1321 100
1598 86
1693 204
2111 14
2323 68
2415 105
2948 99
3674 164
4567 36
4932 8
5674 30
5675 116
Answer:
UPDATE Orders

SET Orders.i_amt = partl.i_amt
FROM Orders, partl
WHERE Orders.o_num = partl.o_num;

This query can be done in a few ways. We
chose to do a two-part query that makes a tem-
porary table that we call partl. The first part of
the query calculates a sum of the total line items

58

by the order number. A given order number
might have 5 line items, so the total line item
amount for each of the five is added and put into
the new i amt field in a temporary table we
called Partl. In order to calculate the total line
items for a single order, we used the optional
GROUP BY clause on the order number field.
The temporary table called Partl is the first table
listed above.

The second part of the query is easier to
understand because it is a simple update query.
The order numbers from the Orders and the
temporary Partl tables are joined in the WHERE
statement. The invoice amount (i_amt) field in
the Orders table is updated to the value i amt
from the temporary table, Partl.

These two queries are simply executed after
all the line items are input, but they must be exe-
cuted in order. Considerable caution should be
exercised on queries like this because update
queries actually change the data in an existing
table. These queries can be executed multiple
times without a problem because there is no cu-
mulative effect involved in the calculation.

This query displays some customer and
payment information for the customers who have
not fully paid a given order. The distinct modi-
fier ensures that a single customer is listed re-
gardless of the number of orders that have not
yet been fully paid. This useful, common busi-
ness query is produced by first joining the or-
ders and customers tables on the customer num-
ber attribute. Orders that have the paid_in_full
attribute equal to O (which is used to represent
the false condition) are then returned.> The
paid_in full attribute in the Orders table was
represented with the bit datatype meaning that a

Note a difference here between the Access data-
base management system and the SQL Server
database system. In Access, there is a yes/no
datatype, so the WHERE clause in the query
would have the paid _in full attribute equal to
‘FALSE.’

The Review of Accounting Information Systems

Volume 4, Number 2

given order.

C name

Alex's Music Store
Bill's Tacos

Bill's Towing
Brian's Brain Surgery
Carol's Green House
Fred's Auto Shop
Jacks Used Autos
Jon's Haircuts
Nate's Racquet Shop
Pacos Bill

¢ addr

921 Rose St.
9873 D St.

345 Qak St.
574 Riverside
44 S 399 E

123 South Main
54 N Autobaun
125 South Main
567 Elm St.
234 Catus Dr.

Answer:

c _city
Logan
Preston
Smithfield
Chicago
Charlotte
Logan
Roanoke
Logan
Baton Rouge
Amarillo

SELECT DISTINCT c.c_name, ¢_addr, c_city, c_state, o.paid_in_full
FROM customers AS c, Orders AS o
WHERE c.c_num = o.c_num AND paid in full = 0;

C state
uT
ID
UT
IL
NC
UT
VA
UT
LA
X

Example 3 - Find the customer name, address, city, and state for customers who have not fully paid a

paid in full

OO OO0 OO OO

SELECT v.v_name, i.[desc]

FROM Vendor AS v, Inventory AS i
WHERE v.v_num = i.v_pum
ORDER BY v.v_name, i.[desc] DESC;

V_name desc

Jon Brown's Materials shovel

Jon Brown's Materials nails

Jon Brown's Materials hammer

Jon Brown's Materials garden spade
Luigi's Inc. sand paper
Luigi's Inc. paint brush
Luigi's Inc. light bulbs
Luigi's Inc. garden gloves
Luigi's Inc. drill

Luigi's Inc. cypress mulch
Luigi's Inc. brown paint

Answer:

V_name

Example 4 - List the vendor name and inventory descriptions of inventory each vendor supplies to us.
Sort the answer in ascending order by vendor name and descending order by inventory description.

desc

Luigi's Inc.

Sanchez's Supplier
Sanchez's Supplier
Sanchez's Supplier
Sanchez's Supplier
Sanchez's Supplier
Sanchez's Supplier
Sanchez's Supplier
Sanchez's Supplier
Sanchez's Supplier

batteries
white paint
snow shovel
snow blower
screwdriver
sand

ladder

hand saw
flashlight
flashlight

59

The Review of Accounting Information Systems

Volume 4, Number 2

The data we need to accomplish this query
is contained in the vendors and inventory tables,
so we join them on the vendor number attribute
in the WHERE clause. We display the vendor
names and the inventory descriptions in the
SELECT clause. The ORDER BY clause sets
the display order of the answer table. In this
case, it is used to list the vendors in ascending
order, which is the default. The DESC modifier
is required after the inventory description so that
inventory can be listed in descending order.

Note that it would be considered bad nam-
ing practice to abbreviate the description field of
the inventory table to DESC because DESC is a
reserved word as was explained in the previous
paragraph. This is an interesting example be-
cause Access accepts DESC in the SELECT
clause of this query whereas SQL Server forced
the bracket modification (i.[desc]) before the
query could execute.

This query groups the total sales by state.
We used an aggregate in the SELECT clause to
get a sum of the orders and named the new col-
umn in the answer table sum_of sales with the
AS modifier. We had to include the state attrib-

ute in the SELECT clause because it is used in
the GROUP BY clause. In other words, if an
attribute is used in the GROUP BY clause, it
must be specified in the SELECT clause.

We joined the Customers and the Orders
tables in the WHERE clause and grouped by
state in the GROUP BY clause. To summarize,
we group by state and then get a sum of orders
for each state.

If an aggregate is specified in the SELECT
statement, the rest of the attributes in the
SELECT clause must either include an aggregate
or be included in the GROUP BY clause. This
is necessary because the attribute in the select
statement that is going to be grouped must be
identified. It is interesting to note that groupings
can take place on more than one attribute. Using
the aggregate operator as we did in this manner
is helpful in determining the total sales that are
made in each state.

It is interesting to note that a left outer join
would be required if we wanted to list all states
along with the associated total sales amounts (if

any).

SELECT c.c_state, SUM(o.i_amt) AS sum_of_sales
FROM customers AS ¢, Orders AS o
WHERE c.c_num = 0.c_num
GROUP BY c.c_state;

c_state sum_of sales
HI 14.0000

ID 68.0000

IL 142.0000

LA 86.0000

NC 105.0000

Example 5 - List the total sales by state where at least one customer exists in the state.

Answer:

c_state sum_of_sales
OR 99.0000

SD 100.0000

TX 200.0000

UT 912.0000
VA 204.0000

60

The Review of Accounting Information Systems

Volume 4, Number 2

and Oregon.

SELECT [desc], cost
FROM Inventory
WHERE i num IN
(SELECT i_num
FROM Lineltem
WHERE o_num IN
(SELECT o_num
FROM Orders
WHERE c¢_num IN

desc cost
screwdriver 2.0000
sand paper .4000
drill 56.0000
garden spade 1.0000
shovel 5.0000
snow blower 50.0000

Example 6 - Find the inventory description and cost for all items sold in the states of Utah, Texas,

Answer:

(SELECT ¢_num
FROM customers WHERE c_state IN('UT",'TX"','OR"))));

desc cost
ladder 20.0000
brown paint 6.0000
hammer 2.5000
batteries 2.0000
flashlight 1.0000

This will display the description and the
cost of the inventory items that were sold in ei-
ther Utah, Texas, or Oregon. This is another
example of multiple sub-queries that are used to
extract specific information from the database.
The inner-most SELECT extracts all Customer
- numbers (c_num) from the customers table that
live in Utah, Texas, or Oregon. Notice the use
of the “IN” operator. As we mentioned earlier,
if more than one c¢_num is possible, the “IN”
operator is required. If only one answer is pos-
sible, the “=" operator is used.

The next SELECT statement extracts the
order ‘numbers (0_num) from the Orders table
for those customers that were returned in the
previous SELECT statement. The next SELECT
statement returns the invoice number (i_num)
from the Lineltem table for all order numbers
that were returned in the previous SELECT
statement.

Finally, we want to display the inventory

61

descriptions and their corresponding costs for
only the inventory items that were returned in
the previous SELECT statement.

This more complex query can also be ac-
complished by simply joining all four tables and
then selecting the specific tuples®. The subquery
approach has a performance advantage over the
join approach in many commercial database
management systems because of the tremendous
cost of joining tables. As the tables grow larger,
the advantage becomes more pronounced be-
cause the subquery method works with smaller
amounts of data, whereas the join method creates
an enormous temporary table which is then re-
duced to the eventual answer.

This query illustrates another difference
between Access and SQL Server which concerns
formatting. Access queries produce output in a

*A tuple is the formal name of a single row or
record in a database.

The Review of Accounting Information Systems

Volume 4, Number 2

Example 7 - Write a query that updates the
amount due attribute in the Orders table.

Answer:

UPDATE Orders
SET amt_due = i_amt - amt_paid;

table format, and the results are displayed in a
more user-friendly manner. For example, the
answer to this query shows several zeros after
the decimal point and does not display currency
symbols, whereas Access eliminates the extra ze-
ros and does display currency symbols. This
probably coincides with the philosophy that Ac-
cess is designed to be an end-user product,
whereas SQL Server is designed to be an indus-
trial-strength product. Other DBMS products
generate output quite similar to that displayed in
these examples.

This is an example of another update query
that actually modifies data in an existing table.
The amount due is calculated as the invoice
amount minus the amount paid and is specified
in the SET clause. Every order in the Orders ta-
ble is updated to this calculated amount. An an-
swer table is not listed here because it is simply
the updated Orders table.

This query is essentially a group of separate
SELECT queries combined using the UNION
statement to form a single query that yields the
total sales for different time periods. In the first
SELECT statement, the aggregate SUM() is ap-
plied to the invoice amount from the Orders ta-
ble. In the end, the invoice amounts will be dis-
played for each specified time period due to the
effects of the ORDER BY clause in the last line
which orders by the time period.

The column heading for invoice amounts is
changed to sum_of sales with the AS modifier
for clarity. Similarly, the second column is re-
named to “year” and the values simply include

62

Example 8 - Write a query that lists the total
sales (orders) for the following time periods:
(1980-1990, 1991-1997, 1998, 1999).

SELECT SUM(_amt) AS sum_of_sales, '1980
to 1990' AS year
FROM Orders
WHERE o date BETWEEN '01/01/80'
AND '12/31/90'

UNION

SELECT SUM(_amt) AS sum_of sales, '1991
to 1997" AS year
FROM Orders
WHERE o _date BETWEEN '01/01/91'
AND '12/31/97'

UNION

SELECT SUM(i_amt) AS sum_of_sales, '1998'
AS year
FROM Orders
WHERE o _date BETWEEN '01/01/98'
AND '12/31/98'

UNION

SELECT SUM(i_amt) AS sum_of_sales, '1999'
AS year
FROM Orders
WHERE o_date BETWEEN '01/01/99'
AND '12/31/99'

ORDER BY year;
sum of sales year
424.0000 1980 to 1990
274.0000 1991 to 1997
190.0000 1998
1042.0000 1999

literals for the time period designations. The
date condition is set in the WHERE statement
using the between operator to include all dates
from 1980 to 1990 inclusive. The rest of the
SELECT statements do the same tasks with dif-
ferent time periods. In summary, this is a clever
method of calculating and displaying summarized

The Review of Accounting Information Systems

Volume 4, Number 2

Example 9 - List the total sales amount of in-
ventory items along with the vendors that sup-
plied those items for the year 1999.

Answer:

SELECT v.v_name, SUM(l.total line item) AS
sum_of sales, '1999' AS year
FROM Lineltem AS 1, Vendor AS v, Or-
ders AS o
WHERE 1.i_num IN(SELECT i_num
FROM Inventory
WHERE v_num = v.v_num)
AND l.o_num = 0.0_num
AND o.0_date BETWEEN '
01/01/99 AND '12/31/99'
GROUP BY v.v_name;

v _name sum of sales vear
Jon Brown's Materials 286.0000 1999
Luigi's Inc. 370.0000 1999
Sanchez's Supplier 386.0000 1999

information for different time periods, but it is
important that all the answers be in the same
format in order to utilize the UNION statement.

This is another query that serves to illus-
trate the difference between ANSI standard SQL,
which SQL Server uses, and Access, which is
only partially compliant. The dates in this ex-
ample are enclosed with an apostrophe (‘) which
is ANSI SQL. In contrast, Access requires dates
in queries to be enclosed with pound signs (#).

This is a simple example of a data ware-
housing type of question that is used for analyti-
cal purposes. An inner SELECT is used to re-
turn inventory numbers for each vendor that has
supplied us with any inventory. We join the In-
ventory and Vendor tables, which has the effect
of ordering the inventory numbers by vendors
that have supplied that inventory. In the end,
this facilitates the grouping by vendors.

63

Example 10 - List the customer names for cus-
tomers that have not fully paid an order and show
the number of days since the order was placed.
(The date this query was processed for this exam-
ple was January 3, 2000.)

SELECT c.c_name, cast(GETDATE() - o.0_date
as integer) AS late_payment days
FROM customers AS c, Orders AS o
WHERE o.paid_in_full = 0 AND o.c_num

= c.C_num;

C name late payment days
Fred's Auto Shop 838
Fred's Auto Shop 432
Fred's Auto Shop 431
Alex's Music Store 5979
Alex's Music Store 432
Brian's Brain Surgery 354
Pacos Bill 349
Bill's Towing 327
Nate's Racquet Shop 325
Jon's Haircuts 1886
Carol's Green House 225
Bill's Tacos 249
Jacks Used Autos 303

The WHERE clause evaluates three condi-
tions. First, inventory numbers for a specific
line item must match those that are returned by
the SELECT statement described in the previous
paragraph. Second, the Lineitem table and the
Orders table are joined on the order number at-
tribute so that the date attribute from the Orders
table can be evaluated. Third, order dates for
all line items that met the first two conditions are
tested and are returned if the order was placed in
the year 1999.

The outer SELECT is then used to list the
name of the vendors, the total dollar amount of
inventory that was sold and that was supplied by
each vendor, and the year which, in this case,
was specified as the literal ‘1999.” The GROUP
BY at the end is the mechanism that facilitates
calculating the sales amount by vendors.

The Review of Accounting Information Systems

Volume 4, Number 2

A common accounting task is calculating
the aged accounts receivables or, in other words,
determining how many days have passed since a
receivable has been issued. Since we did not in-
clude an attribute in this sample database that ex-
actly represents the receivable issue date, we use
an approximate attribute by using the order date.

The SELECT statement is used to list the
customer’s name and a calculation that is the
current system date minus the order date and is
titled in the answer as late_payment days. The
ordering of dates is important in this calculation
because more recent dates are larger values, and
older dates are smaller values in most, if not all,
systems. Subtracting the order date from the
system date in this case is not ANSI standard for
two reasons. First, GETDATE() is the proprie-
tary SQL Server method of returning the current
system date. Second, the cast() function was
used to convert the date calculation into integers.
If the cast function were not used, the number of
days outstanding would appear as a date which
would not be useful. Access seems to have a
more simple implementation as the following
works in the SELECT clause in Access:

SELECT c.c_name, date() -
late_payment days

0.0 _date AS

The WHERE statement includes two con-
ditions. First, the Orders and Customer tables
are joined on the order number attribute and sec-
ond, the WHERE returns only those orders that
have not yet been paid in full. See the discus-
sion in Example 3 concerning the paid in full at-
tribute having a O or a 1 to represent false or
true respectively.

Conclusion

Recently, the use of information technology
for business purposes has become critically im-
portant, in no small part, due to the Internet.
Though the accounting profession has already
changed in significant ways in response to ad

64

vances in technology, change continues to occur
at a staggering rate. Though database technol-
ogy is not new, its level of usage is dramatically
increasing, and innovative database applications
continue to appear. Because of the importance
of database technology in business, accountants
would be well served to augment their business
and accounting knowledge with database com-
petency.

Two important database aptitudes include
database design and querying a database. The
design used in this case is similar to Olsen
(1999) which illustrated using the ER diagraming
method to model the sample business listed in
Figure 1. In summary, database design is im-
perative for aspiring accountants planning to
work in the systems area.

For many years, microcomputer database
applications relied on proprietary querying
schemes as the primary method of “questioning”
the database. In contrast, contemporary database
systems use SQL as the primary method of
“questioning” the database. The SQL method
continues to enjoy the advantage of standardiza-
tion, which means that accountants can learn one
method of querying and still be competent with
different databases. The SQL examples in this
case were designed to illustrate some advanced
methods of querying that can be useful for analy-
sis purposes. Systems savvy accountants that
can combine advanced SQL techniques with
business and accounting knowledge will have a
substantial competitive advantage as information
providers.

Future research in the SQL business area
needs to include specific accounting and finance
extensions to the language. In addition, new
Internet specific languages such as XML that
often integrate SQL must also include accounting
and finance extensions. There is currently a
concerted effort in developing such standards in
both XML and SQL.L

The Review of Accounting Information Systems

Volume 4, Number 2

References 4. Olsen, D., “Accounting Database Design
and SQL Implementation” Review of Ac-
1. American Accounting Association, “Report counting Information Systems (Summer,
of the AAA Committee on Contemporary 1999).
Approaches to Teaching Accounting In- 5. Olsen, D., and T. Calderon, “Database
formation Systems.” May 1986. Coverage in the Accounting Information
2. Chen, P.P., “The Entity-Relationship Systems Course” Journal of Accounting
Model: Toward a Unified View of Data.” and Computers Information Systems
ACM Transactions on Database Systems (Spring 1996).
(January 1976): 9-36. 6. Olsen, D., and S. Kimmell, “Towards In-
3. Elliott, R. K., "The Future of Audits." tegrating Advanced Database Concepts into
Journal of Accountancy, (September 1994), Accounting” Review of Accounting Infor-
pp. 74-82. mation Systems (Summer, 1998).
Appendix A
Table: customers
Columns
Name Type Size
c_num Text 7
C_name Text 30
c_addr Text 20
c_city Text 15
C_state Text 2
c_zipcode Text 9
c_phone Text 11
Input Mask: \(aaa") "aaa\-aaaa
¢ fax Text
c_internet Text
Relationships
customers to Orders
c_num 1 to ¢ num M
Attributes: One-To-Many

65

The Review of Accounting Information Systems

Volume 4, Number 2

Appendix B

Customers Table

87543-

12345 g;i‘;SA“‘O 123 South Main |Logan |UT 84321- (435) 7459999 (435) 745-9998 Fredsautoshop.com
12398 ‘S"‘tl:r"e SMUsic lo)1 Rose St. |Logan |UT |84322- (435) 798-7374 |(435) 798-3456 | Alexmusic.org
13258];’;‘rag‘;fyBram 6574 Riverside Chicago |IL 45367- |(756) 874-0000 |(123) 874-7543 | Brian@brainsurgery.edu
James' Jury |75 Eeast 1200 St.
25684 Providers South George UT 87654- 1(435) 546-9875 ((435) 546-9875 |James@gameplayer.org
33543 Pacos Bill 234 Catus Dr. Amarillo TX 79101- (855) 245-6498 {(855) 245-6499 Bill@cowboy.net
34219 | VIKS 656 N oggg W (MHINCA- ly i issa44- |(852) 7419632 |(852) 741-9633 Viks@football.com
Apparrel polis
34265 Bill's Towing 345 Oak St 2::1“" UT 56789- |(756) 874-7543 |(756) 874-7543 bill@aol.com
44523 Bun Huggers 334 S Main Flagstaff [AZ [86038- (602) 587-8985 (602) 587-8986 Buns@hamburgers.com
45676 ggfg;‘ Nail's 14980 Oak Street. f_‘l‘;&ﬁ" UT 84333- (435) 765-6455 |(435) 765-1111 |Susan@earthlink.com
54234 g::lll?ts Blood 12 Translyvania | Appleton |[WI |54913- [(988) 556-4878 1(988) 556-4879 |Dracula@blood.net
Nate's Baton
§f943 Racquet Shop | 267 EIm St Ronge LA 45637 |(756) 8647543 |(756) 864-1111 nate@stock.com
59870 g’;‘iriuts 125 South Main |[Logan |UT |84321- (435) 792-9856 |(435) 456-9876 |Hair@net.com
68954 SIS 44 S 399 E Charlotte INC [28217- |(257) 563-1474 [(257) 563-1475 |Green@thumb.org
Green House
75433 |Bill's Tacos (9873 D St. Preston ID 78566~ (756) 874-7543 i(756) 874-7777 Tacos@net.org
84321 Maui 43 Beach Ave Honolulu {HI {96850- |(456) 123-7894 1(456) 123-7895 |Surfin@pointbreak.org
Surfboards
Witches
85477 o ” 1 Broom Dr Salem |OR (97306- |(312) 587-6578 |(312) 587-6579 |Black@cat.com
88344 fﬁf:sU“d 54 N Autobaun |Roanoke |VA [23173- |(644) 998-5566 |(644) 998-5565 |Cars@drive.net
98563 Butfalo 22 Bill Dr Sioux g1y 157107- |(778) 235-8796 |(778) 235-8797 |Bill@buffalo.com
Museum Falls
Vendor Table

1236 Jon Brown's 122145 Oak Center- UT (435) 267-1890 1(356) 789-0654 ijbrown@ 77 1
Materials St. ville earthlink.com

1789 Sanchez's 472 South Logan [UT 84321- (435) 345-9876 ((435) 765-9087 |Juan@aol.com 98
Supplier Main

3487 Lisa's 345 So. Lyman |OH [87632- (330) 567-4532 (330) 578-9302 Lisa@aol.com 99
Fabrics Oak St.

5464 Luigi's Inc. 1345 East Millville {UT |84563- (456) 234-6789 ((456) 234-8901 Lu@aol.com 45 3

Center

66

The Review of Accounting Information Systems

Volume 4, Number 2

Orders Table
0145 12398 8/21/1983 $23.00 $401.00
0298 13258 1/14/1999 $40.00 $102.000
5 s i i 500 T E——
0711 133543 1/19/1999 $200.00' $55.00 $145.00 No.
1267 59870 11/4/1994 $110.00 $90.00 $20.00 No'
1321 198563 2/28/1999 $100.00 $100.00 .00 Yes
1598 56943 2/12/1999 ©$86.00 $50.00 - $36.00. No.
1693 88344 3/6/1999 $204.00 $25.00 $179.00 No.
211 831 4/14/1999 $14.00 $14.00. Yes
2323 175433 4201999 $68.00 §34.00 No
2415 68954 5/23/1999 $105.00 $75.00 No|
2948 85477 4/2/1999 $99.00 $99.00
3674 12345 9/17/1997 $164.00 $15.00 $149.00
4567 12345 10/28/1998 $36.00 $20.00 $16.00
4932 45676 11/4/1998 $8.00 $8.00 $0.00 Yes'
5674 12345 10/29/1998 $30.00 $20.00 $10.00 No.
5675 12398 10/28/1998 $116.00 $110.00 $6.00 No

Inventory Table

112345 178? screwdriver red $2.00 $6.00 1
122257 5464 sand paper orange $0.40 $2.00 0.3
23560 5464 drill yellow $56.00 $99.00 2.7
33392 1789 sand white $10.00 $25.00 100
34567 1789 snow shovel blue $10.00 $25.00 4.5
35241 1236 garden spade silver $1.00 $4.00 1.1
45000 1236 shovel gray $5.00 $18.00 2
45068 5464 paint brush brown $2.00 $6.00 3
45678 1789 snow blower red $50.00 $100.00 5
48573 1789 ladder silver $20.00 $60.00 15
56789 5464 garden gloves green $1.00 $2.00 0.2
166775 1789 white paint white $6.00 $20.00 12
§67890 5464 light bulbs white $1.00 $2.00 0.1
178901 11236 nails grey $2.00 $6.00 3
85947 5464 brown paint brown $6.00 $20.00 12
86753 1789 hand saw silver $5.00 $14.00 4
188574 5464 cypress mulch brown $5.00 $15.00 100
89012 1236 hammer grey $2.50 $7.00 2
90210 5464 batteries black $2.00 $6.00 1.3
95739 1789 flashlight red $1.00 $5.00 0.65
195740 11789 flashlight blue $1.00 $5.00 0.6

67

The Review of Accounting Information Systems

Volume 4, Number 2

0145 23560 4 $396.00
0145 89012 4 $28.00
0298 45068 8 $48.00
0298 56789 5 $10.00
0298 89012 12 $84.00
0342 12345 2 $12.00
0342 22257 6 $12.00
0711 45678 1 $100.00
0711 48573 1 $60.00
0711 90210 5 $30.00
0711 95739 2 $10.00
1267 35241 5 $20.00
1267 45000 5 $90.00
1321 45678 1 $100.00
1598 33392 2 $50.00
1598 45000 2 $36.00
1693 33392 1 $25.00
1693 35241 2 $8.00
1693 45000 5 $90.00
1693 56789 3 $6.00
1693 88574 5 $75.00
2111 86753 1 $14.00
2323 78901 9 $54.00
2323 89012 2 $14.00
2415 90210 15 $90.00
2415 95739 3 $15.00
2948 23560 1 $99.00
3674 22257 12 $24.00
3674 85947 7 $140.00
4567 45000 2 $36.00
4932 22257 4 $8.00
5674 12345 5 $30.00
5675 12345 1 $6.00
5675 95739 22 $110.00

UPS

Federal Express

U.S. Post Office

68

