The Review of Accounting Information Systems

Volume 4, Number 3

Inventory Costing:
Developing Business Logic
In Accounting Systems

Robert W. Ingram, (E-mail: ringram@cba.ua.edu), University of Alabama

Abstract

Business logic is the link in an information system between a user interface and a da-
tabase. Typically it contains formal rules, translated into computer programs, that
control how data will be processed to achieve the objectives of the information sys-
tem. This paper describes a classroom exercise to help students understand this seg-
ment of an information system. In addition, it is useful for helping students under-
stand the relation between traditional financial accounting and accounting systems.
They are required to describe formally and precisely how FIFO and LIFO inventory
values can be derived in an automated system.

Introduction

his paper describes a classroom ex-

ercise to help students understand the

role and importance of business logic
in a computerized accounting system. It exam-
ines the tasks of processing inventory data to de-
termine cost of goods sold using FIFO and LIFO
methods and of updating inventory records. In
addition to being designed to help students un-
derstand the function of the business logic com-
ponent of an information system, it is designed
to help students understand differences between
how data are processed in traditional financial
accounting courses and how they are processed
in computerized accounting systems.

The next section of the paper éxplains the

purpose of the exercise. The second section con-
tains the exercise. The third section provides a
solution and notes for the exercise. The fourth
section provides a brief summary, and the final
section identifies suggestions for future research.

Readers with comments or questions are encour-
aged to contact the author via e-mail.

11

Purpose

A system can be conceived as containing
three segments: a user interface, a database that
stores and retrieves data, and a business logic
segment that processes data and links the user in-
terface to the database. The business logic seg-
ment often is left out of the conceptual model in
accounting courses. Financial accounting side-
steps the issue by assuming a human processor
who calculates the required numbers, records
transactions, and computes balances. Business
logic is a mental process in which the user de-
cides on how rules should be applied. Often sys-
tems courses do not focus on this segment either,
emphasizing instead the creation of user inter-
faces and, moreso, the structure and design of
relational databases.

The use of commercial software in systems
courses can further exacerbate the problem.
These programs reveal the user interface but
conceal the business logic and, in many cases,
the database functions. Some of these programs

The Review of Accounting Information Systems

Volume 4, Number 3

are simply automated general ledger systems that
take away the necessity for human data process-
ing required of manual systems. Students play
the role of data entry clerks as they learn to
process transactions and create reports. More
advanced products may provide exposure to a
fuller range of activities (sales, purchasing, etc.),
but they are not particularly useful for helping
students understand how computerized systems
process information. The same is true of data-
base programs such as Microsoft Access that are
commonly used in systems courses. Typical ex-
ercises in textbooks that provide instruction in
using database programs emphasize the creation
of tables and user interfaces. Students can learn
something about processing by constructing que-
ries, but query by example techniques do not
provide a basis for creating realistic business
rules, unless one is prepared to add programmed
components (modules in Access). And, there is
no particular advantage in using this software for
program development unless one is interested in
developing a stand-alone Access system for a
small business environment.'

The exercise described concentrates on the
business logic segment. Though it could be con-
nected to a user interface and formal database, it
is currently designed to function independently
of these segments. The issue of concern is not
how data are entered, stored, or retrieved, but
how the system takes the input and manipulates
it to produce needed information and to update
records. It forces students to think formally and
precisely about how information is processed in
a computerized system.

Another purpose of the exercise is to help
students transition their thinking from financial
accounting to systems courses. The conceptual
model underlying financial accounting is the
general ledger model, largely still thought of in
terms of a manual system. Students learn finan-
cial accounting by recording journal transactions,
posting ledger accounts, and transferring these
data to financial statements. A database perspec-
tive provides the conceptual model for much of

12

accounting information systems.> Most transac-
tions originate within subsystems that capture
business activities as elements of relational data-
bases. Financial statements are simply one view
or type of report produced by these systems. The
general ledger is a part of the database that cap-
tures data in a specific form for financial report-
ing purposes.

Database systems store and retrieve data us-
ing processes that are quite different from those
assumed in financial accounting courses. What is
similar between financial accounting and systems
is the business logic that links data collection and
data storage. Though financial accounting is only
a part of a management information system, the
business logic that applies to that part of the sys-
tem is similar conceptually between traditional
and computerized systems. The difference in this
logic segment is in how processing occurs. The
rules necessary to process data in a computer
system are much more formal and precise than
those in a traditional system because of the con-
straints and limitations inherent in a computer
environment. This exercise can be used to help
students understand similarities between manual
and computer systems and to understand why it
is important to be able to describe processes with
which they are familiar in financial accounting in
precise and detailed terms.

The exercise provides students a simple sce-
nario and requires them to describe the process-
ing necessary to accomplish a fundamental ac-
counting task, computing FIFO and LIFO inven-
tory values. The description occurs at different
levels, all of which may not be appropriate in a
particular course setting.

At a basic level, students are asked to ex-
plain the steps necessary for a program to access
inventory records containing different cost layers
and products, to calculate inventory values using
these records, and to update the records for those
items that have been sold. The purpose of this
requirement is to force students to examine the
mental process they go through in calculating in-

The Review of Accounting Information Systems

Volume 4, Number 3

ventory values and to translate this process into
individual steps that a program must follow to
perform the same tasks.

At a second level, they are asked to prepare
a program flowchart describing the logic associ-
ated with these tasks. The purpose of this re-
quirement is to help students see the need for a
formal description of a logical process as a
means of describing the steps necessary to ac-
complish a task. In particular, the flowchart
should reveal the recursive loops in the process
of calculating inventory values and get students
to think about how the looping must change be-
tween FIFO and LIFO methods.

At the third level, they are asked to prepare
a step by step description of a computer program
that completes the inventory tasks. This step is a
useful preface for designing a computer pro-
gram. It requires students to formalize the recur-
sive processes they described in the second re-
quirement. For courses that have no computer
programming prerequisite or component, this re-
quirement may be the last that is feasible for the
exercise.

At the last level, students are required to
write a computer program that completes the
tasks and to provide output to demonstrate the
tasks have been completed. The program is not
especially complicated and provides an opportu-
nity for students to apply their programming
skills in an accounting context, for those pro-
grams and courses that require these skills. The
choice of programming language is left to the in-
structor or student. The instructor does not even
have to be particularly competent in the pro-
gramming language because the student must
demonstrate that the program produces accurate
output.

An alternative to having students produce a
program is to have them evaluate and explain the
example program in the suggested solution to the
exercise provided later in the paper. This can be
an exercise in exposing students to computer

13

programming and learning to read and examine
the logic of a program. Students can also ex-
periment with the computer program provided in
the solutions by running the program and chang-
ing input values to adjust the product, number of
units sold, and inventory method used. All soft-
ware used in the exercise are available on the
web without cost.

The Exercise

As an employee of a large merchandise
company, you have been given the task of devel-
oping a module for the company’s information
system that determines inventory costs for sales
transactions and updates inventory records. The
company uses FIFO for some products and LIFO
for others. Therefore, the system should be able
to determine either value for a particular transac-
tion.

Transaction data that will serve as input to
the module are the product number, the quantity
of the product sold, and whether FIFO or LIFO
value is desired. Inventory records that will be
processed and updated are stored in a file con-
taining three fields of concern for this module:
the product number, the unit cost of the product,
and the quantity of the product on hand. The
company sells several products and maintains in-
ventory records for each product and for differ-
ent cost layers for each product. Records appear
sequentially in the file by product and from the
earliest to latest purchase date for each product.
The following records should be used for testing
your module:

Product Unit Cost Quantity on
Number Hand

1 10 10

1 11 10

1 12 10

2 3 10

2 4 10

2 5 10

The Review of Accounting Information Systems

Volume 4, Number 3

Your supervisor has asked that you provide
a report that contains:

1. A narrative description of the steps neces-
sary to process the inventory data and pro-
duce the required information,

2. A program flowchart that describes the logi-
cal steps necessary for the module to ac-
complish its purpose,

3. A listing of steps a computer program would
need to complete to process the data, and

4. Program code that accomplishes the tasks
described for the system.

Updated records will report the quantity on
hand after the sales transaction for those layers
that have not been fully depleted. You may use
any standard programming language for the
fourth requirement, unless otherwise specified by
your instructor. You can assume that sales have
already been filtered to eliminate transactions re-
quiring more units of a particular product than
are available in inventory.

The program should be demonstrated by
providing cost and updated inventory records for
each of the following transactions:

Inventory Product Units Sold
Method Number

FIFO 1 2

FIFO 1 12

FIFO 2 4

FIFO 2 22

LIFO 1 2

LIFO 1 12

LIFO 2 4

LIFO 2 22

Solution and Notes

This section provides examples of responses
to each case requirement. The examples are sug-
gestive of appropriate solutions, but alternative
approaches are possible. Rather than providing
students with a specific solution, instructors
should use the case as a basis for discussion of

14

how information systems accomplish the tasks
assumed in more traditional courses. The exam-
ples provide guidance for that discussion.

Narrative Description

A key issue in writing the narrative is for
students to be precise about each task a computer
program must perform and the sequence in
which the tasks must be completed. Unlike hu-
man processing, machine processing does not
tolerate ambiguity. If the program developer is
not able to define specifically what a program is
to accomplish and describe precisely how the
program will accomplish its purpose, it is likely
that the program will not accomplish this pur-
pose. The remainder of this section provides an
example narrative.

The system must complete a series of tasks.
The inventory method, product number, and
quantity sold must be obtained by the business
logic component of the system from user input.
The file that contains inventory records must be
opened, and records must be read from the file
and stored in computer memory. The program
must compare the product number from the
transaction with the product numbers of the in-
ventory records. When a match is found, the
program must identify the appropriate inventory
layers. The first layer used for FIFO is the oldest
layer (first in sequence) for a particular product.
The first layer used for LIFO is the newest layer
(last in sequence). If a record does not match the
product number or is not the appropriate layer,
the program must process the next record.

Once the appropriate product and layer are
identified, the program must determine whether
the number of units in the layer is sufficient to
cover the requirements of the transaction. If the
number is sufficient, the cost of goods sold for
the transaction will be the cost of units removed
from other layers (if any) plus the number of
units removed from the current layer times the
unit cost of the current layer obtained from the
inventory record. In addition, the number of

The Review of Accounting Information Systems

Volume 4, Number 3

units in the layer must be adjusted by subtracting
the number of units removed from the number
available prior to the sale.

If the number of units in the current layer is
not sufficient, the program must get the cost of
the current layer and store that amount to be
added to the cost of other layers. The cost of the
current layer is the quantity of units in the layer
times the unit cost of the layer. In addition, the
number of units in the layer becomes zero, and
the record for the layer should be removed from
the inventory file. The next layer then must be
processed and the cost of units in that layer must
be added to the cost of the prior layer until suffi-
cient units are identified to cover the require-
ments of the sale. As each layer is processed, the
units in the layer must be reduced by the number
of units drawn from the layer.

Finally, the program must rewrite the inven-
tory records in the original sequence, omitting
those for which the quantity of units has become
zero. The program must also report the cost of
goods sold to the user.

Program Flowchart

Figure 1 provides an example of a flow-
chart. The key tasks described in the flowchart
are the same as those in the narrative. A primary
advantage of the flowchart is its ability to dem-
onstrate the recursive processing that must occur
in the system, matching on product number and
selecting the appropriate inventory record (each
record represents a combination of product num-
ber and cost layer).

Though the logic underlying the tasks is
relatively straightforward, describing this logic
will not necessarily be an easy task for students
who are not used to thinking explicitly through
the steps necessary to perform an accounting
task. As was true for the narrative, alternative
solutions are possible. However, the number of
acceptable variations of the flowchart is much
more limited than for the narrative. Through

15

class discussion, the instructor should help stu-
dents come to a strong consensus about what the
flowchart should contain. Again, a purpose of
the exercise is to help students learn to think
precisely and to learn why such thinking is im-
portant.

Another avenue of discussion about the
flowchart is how the process differs between
FIFO and LIFO methods. The logical steps in
the program are identical between the two meth-
ods. The difference is in where the program be-
gins and ends its processing. Students are likely
to understand that FIFO begins with the oldest
inventory items and moves towards the newest
and that LIFO begins with the newest and moves
towards the oldest. They probably have not
thought, however, about how those tasks are ac-
complished when processing inventory records.
If the records are sequenced by product number
and cost layer, the task is simply a matter of
whether looping begins with the first record in
the file or the last.* The program works exactly
the same way for FIFO or LIFO. It simply starts
at a different location in the file and moves in a
different direction.

Program Description

Writing a computer program without a spe-
cific idea of the steps the program will follow is
an exercise in futility. Breaking a task into steps
and sequencing those steps in a logical order is
important for learning to think precisely. Thus,
even if code is not to be written, it is useful for
students to identify the steps that a program
would follow to process inventory data.

Table 1 contains a listing of those steps. The
format used is arbitrary and variations are ap-
propriate, but the sequence of steps is relatively
fixed. For example, the inventory file must be
opened and data in the file must be read by the
program before records can be matched or up-
dated. Indenting is used in the table to identify
related processes. Other ways of grouping the
processes could be used.

The Review of Accounting Information Systems Volume 4, Number 3

Figure 1
Program flowchart for calculating cost of goods sold and updating inventory

Enter product
and quantity

v

Get inventory
record* >

* Records are read from
earliest to latest if FIFO

and from latest to earliest if
LIFO

Does record match

< product? >———>

Yes

s doh of No Calculate cost of
sqoh o layer and update
layer > qoh

sufficient?

Calculate cost and
update qoh

v

Report
inventory cost

16

The Review of Accounting Information Systems

Volume 4, Number 3

Table 1

Program Steps for Computing FIFO or LIFO Inventory Costs

1 read transaction data (product number, quantity sold) and inventory method

2 open inventory file

3 create variables to store product number, unit cost, and quantity on hand data

4 if inventory method is fifo

5 read next inventory record from beginning of file in increasing sequence

6 if product number for record matches product number for the transaction

7 if quantity on hand (qoh) is > = quantity needed to complete sale

8 compute cost of sale [layer cost (line 13) + (quantity * unit cost)]

9 reduce quantity on hand by quantity removed (qoh = qoh - quantity)
10 report cost of sale

11 exit program

12 if quantity on hand is < quantity needed to complete sale

13 compute cost for units in current layer (layer cost = qoh * unit cost)
14 reduce quantity needed to complete sale (quantity =-quantity —qoh)
15 reduce quantity on hand to 0 (qoh = 0)

16 return to line 5

17 if product number for the record does not match product number for the transaction
18 return to line 5

19 if inventory method is lifo

20 read next inventory record from end of file in decreasing sequence

21 if product number for record matches product number for the transaction

22 if quantity on hand (qoh) is > = quantity needed to complete sale

23 compute cost of sale [layer cost (line 28) + (quantity * unit cost)]
24 reduce quantity on hand by quantity removed (qoh = qoh - quantity)
25 report cost of sale

26 exit program

27 if quantity on hand is < quantity needed to complete sale

28 compute cost for units in current layer (layer cost = qoh * unit cost)
29 reduce quantity needed to complete sale (quantity = quantity —qoh)
30 reduce quantity on hand to 0 (qoh = 0)

31 return to line 20

32 if product number for the record does not match product number for the transaction
33 - return to line 20

Class discussion of the program description

should focus on identifying all the necessary
steps and putting them in the required order:

1.

Line 1 requires that the appropriate variables
be read from input. Three variables are nec-
essary—the product number, the number of
units of the product sold, and whether the
inventory method used is FIFO or LIFO.

Line 2 indicates that the inventory data file
that lists product and cost data must be
opened. Depending on the program language

17

used, opening the file may involve a specific
statement or a reference to the data file.

Line 3 creates variables (address locations)
to store data from the inventory file. This is
an important step in computer processing
that does not exist in manual processing.
Line 4 requires the program to determine
which inventory method is being used and
invokes lines 5 through 18 if the method is
FIFO. Lines 19 through 33 repeat this proc-
ess when the method is LIFO.

The Review of Accounting Information Systems

Volume 4, Number 3

5. Line 5 indicates that processing data in-
volves reading a record from the inventory
file and manipulating that data if the product
number is the same as that of the transaction
that was input in line 1. The key difference
between the FIFO and LIFO methods in this
program is whether the processing begins
with the first record in a sequential file or
with the last record. Compare lines 5 and
20.

6. Line 17 provides for the option that the re-
cord read from the inventory file does not
match the transaction. When a match is not
found, the program loops back to read the
next record from the inventory file. The
program assumes that all transactions are
valid references to existing products. Class
discussion could consider what happens if an
invalid product number is entered. Another
option could be added that results in an error
message, for example.

7. If the product number for the transaction
matches a record in the inventory file, two
possibilities arise. One of these is that the
number of units in the record (number of
units available in the cost layer) is sufficient
to complete the transaction. Lines 7 through
11 describe the processing under this condi-
tion. In line 8, the cost of goods sold is
computed as the cost brought over from a
previously processed record (layer), if any,
plus the number of units from the current
record (layer) needed to complete the sale
times the unit cost of the current layer. The
number of units removed from the current
record is subtracted from the quantity on
hand for the record in line 9. The remaining
tasks are to report the cost of goods sold to
the user (linel0) and end the program (line
11).

8. A second possibility when a match occurs is
that the number of units in the inventory re-
cord is less than the number of units needed
to complete the sale. Lines 12 through 16
provide for this option. The cost for those

18

units in the current record is the number of
units in the record times the unit cost (line
13). The number of units still needed to
complete the sale is the number of units
needed to complete the sale minus the num-
ber of units that were in the current record
(line 14). The number of units in the record
is zero after the units sold are removed (line
15). Processing continues by reading the
next record (line 16).

9. An identical process is followed for LIFO,
lines 19 through 33, except that processing
begins with the newest record for each
product.

Additional discussion could focus on how
the program could fail to produce valid informa-
tion and what controls could be included to pre-
vent or detect problems. The primary purpose of
this exercise, however, is to illustrate the busi-
ness logic component of information systems.
Many of the primary controls (access rights to
data and validation of input for correct format
and data types, for example) are the responsibil-
ity of the user interface or the database. The ac-
tivities that affect information validity in this
program are accessing the correct records and
processing them in the correct order and, most
importantly, the program logic that results in the
correct manipulation of the data.

Program Code

The final requirement of the exercise is to
prepare a computer program that calculates cost
of goods sold and updates inventory. This pro-
gram will vary depending on the programming
language and approach used by students. Table 2
provides an example program written in perl
(practical extraction and reporting language). It
is presented primarily for those who want to
have students examine and perhaps experiment
with a program, rather than write their own. For
this purpose perl has its advantages.

The Review of Accounting Information Systems Volume 4, Number 3

Table 2
Program to Calculate Cost of Goods Sold and Update Inventory

1 #!/usr/local/bin/perl

2 # inv_method.pl: reads data from an inventory file, computes fifo

3 # or lifo inventory cost, and updates inventory file

4

5 # open files

6 open(INV, "inventory.data"); #open inventory data file

7 open(TEMP, "> inventory.temp"); #open temporary file in write mode
8

9 # set initial conditions

10 $i=0; #count variable

11 $prod_quant = 22; #product quantity

12 $prod num = 2; #product number

13 $method = "lifo"; #inventory method

14 $stop = 0; #indicator to stop processing

15

16 #read data from inventory file

17 while($line= <INV >) #read file as long as records exist

18 {

19 $i++; #increase count variable

20 @inventory = split (":", $line); #read records; fields delimited by :
21 $pnum([$i] = $inventory[0]; #product number from file

22 $cost[$i] = $inventory[1]; #unit cost from file

23 $qoh[$i] = $inventory[2]; #quantity on hand from file

24}

25 close INV; #close inventory file

26

27 $nn = $i-1; #get total number of records in file

28 $quant = $prod_quant; #get copy of product quantity

29

30 # determine subroutine based on inventory method

31 if($method eq "fifo"){&fifo;}

32 if($method eq "lifo"){&lifo;}

33

34 # Print revised inventory records

35 for($i=1;$i< =$nn;$i++) #loop through records

36

37 if($qoh[$i] > 0) #omit layers with no inventory

38 {

39 print "$pnum[$i]:$cost[$i]:$qoh[$i]:\n"; #print records to screen
40 print TEMP "$pnum([$i]:$cost[$i]:$qoh[$i]:\n"; #print records to file

19

The Review of Accounting Information Systems

Volume 4, Number 3

41 }
2

43 close TEMP; #close temporary file

44 rename "inventory.temp", "inventory.data"; #update inventory file
45

46 # fifo subroutine

47 sub fifo

48 {

49 for($i=1;$i< =$nn;$i+ +) #set loop parameters to start at beginning of file
50 {

51 while($pnum[$i] = =$prod_num) #product number matches current record
52 {

53 #inventory layer has sufficient quantity and quantity has not
54 #already been met from another layer

55 if(($quant < =$qoh[$i]) and ($stop==0))

56 {

57 #get total cost from current layer

58 $tcost=S$tcost+ ($quant*$cost[$i]);

59 $qoh[$i] =$qoh[$i]-$quant; #recompute quantity on hand
60 $stop = 1; #set to stop processing

61

62 #print total cost of goods sold

63 print "The FIFO cost for $prod_quant units is \$$tcost.\n";
64

65 last; #end loop

66 }

67

68 #inventory layer does not have sufficient quantity and quantity
69 #has not been met from another layer

70 elsif(($quant > $qoh[$i]) and ($stop==0))

71 {

72 #get as much of total cost as possible from current layer

73 $tcost = $tcost+($qoh[$i]*$cost[$i]);

74 $quant = $quant - $qoh[$i]; #reset quant to amount still needed
75 $qoh[$i] = 0; #reset layer quantity to O

76 $i++; #increase count for next layer

77 }

78

79 #continue if inventory layer is not needed

80 else {$i++;} #increase count for next layer

81 }

82 }

20

The Review of Accounting Information Systems Volume 4, Number 3

83 }

84

85 # lifo subroutine

86 sub lifo

87 {

88 for($i=9$nn;$i> =0;$i--) #set loop parameters to start at end of file
89 {

90 while($pnum[$i] = =$prod num) #product number matches current record
91 {

92 #inventory layer has sufficient quantity and quantity has not
93 #already been met from another layer

94 if(($quant < =$qoh[$i]) and ($stop==0))

95 {

96 #get total cost from current layer

97 $tcost=S$tcost + ($quant*$cost[$i]);

98 $qoh[$i] =$qoh[$i]-$quant; #recompute quantity on hand
99 $stop = 1; #set to stop processing

100

101 #print total cost of goods sold

102 print "The LIFO cost for $prod_quant units is \$$tcost.\n";
103

104 last; #end loop

105 }

106

107 #inventory layer does not have sufficient quantity and quantity
108 #has not been met from another layer

109 elsif(($quant > $qoh[$i]) and ($stop==0))

110 {

111 #get as much of total cost as possible from current layer
112 $tcost = $tcost+($qoh[$i]*$cost[$i]);

113 $quant = $quant - $qoh[$i]; #reset quant to amount still needed
114 $qoh[$i] = 0; #reset quantity for layer to O

115 $i--; #decrease count for next layer

116 }

117

118 #continue if inventory layer is not needed

119 else {$i--;} #decrease count for next layer

120 }

121 }

122}

21

The Review of Accounting Information Systems

Volume 4, Number 3

Perl is derived from C and uses a syntax
similar to other C-based languages such as C+ +
and Java. It is not strongly typed, however, and
is easier to use than many other languages. Also,
it has strong text handling capabilities. The
product number used in the exercise is a simple
number (1 or 2). The program will handle longer
text identifiers as well. Thus, the product num-
ber could be something like "A12b3-45¢", and
the program would work equally well. Perl is an
interpreted, rather than compiled, language.
Therefore, the program is run directly from
source code without the need to compile object
code. Of primary importance is that perl is free
and easily installed on most computers. Lan-
guage files can be downloaded from
www.perl.org. Versions are available for Win-
dows and Unix operating systems. On a Win-
dows machine, the code is in the form of an ex-
ecutable file. Simply execute the install program
and specify where the files should be saved.
Typically, this is to c:\perl. Programs are run
and files are accessed from c:\perl\bin. To run
the program in Table 2 from the command
prompt, go to the c:\perl\bin directory where the
inventory program and data file have been stored
and enter perl inventory.pl. The inven-
tory.pl program in Table 2 and the data file ac-
cessed by the program can be downloaded from
(http://bama.ua.edu/ ~ ringram/inventory/).*

The code in Table 2 follows fairly closely
the steps in Table 1. The perl program begins
with header information in lines 1 through 3.
Perl uses the hash symbol (#) to identify com-
ments. Comments are provided throughout the
program to describe the purpose of each line.
The first line is standard for perl programs and
identifies the location of the perl interpreter in
most Unix systems. The line is ignored and does
not need to be modified on Windows systems.

The actual program begins in line 6. Two
files are opened. One is the inventory file and
the other is a temporary file to which changes in
the inventory file are written. The inventory file
is opened in read mode and the temporary file is

22

opened in write mode, indicated by the > sym-
bol before the file name.

Lines 10-14 create the input data and initial
conditions for the program. Input normally
would be read from a user interface program that
passes data to the perl file for processing. Be-
cause the user interface is not part of this exer-
cise, the data are input directly as variables in
the program. The values of $prod quant,
$prod num, and $method can be changed in a
text editor.’

Line 17 begins reading records from the in-
ventory file. Records will continue to be read
until end of file is reached. Each record is sepa-
rated into the product number, unit cost, and
quantity fields in lines 20-23. Fields are sepa-
rated in each inventory record by a colon. Line
20 uses this identifier to create the fields that will
be stored in memory. These data are stored in
arrays numbered from 1 for the first record
through the last record number. Storing the
fields in memory, permits the processing to be-
gin with the first record (1) and work forwards
for FIFO or to begin with the last record ($nn
determined in line 27) and work backwards for
LIFO.

After the data are read from the inventory
file, the file is closed in line 25.

Line 28 creates a copy of the number of
units sold. One copy will be modified later in the
program to keep track of how many units are
still needed to complete the sale. The other copy
is retained to confirm the number of units sold
with the user (line 63).

Before data manipulation begins, the pro-
gram needs to know whether to perform the ma-
nipulation with FIFO or LIFO. Lines 31 and 32
are used for this purpose. These lines call the
appropriate subroutine. The subroutines begin
with line 47 for FIFO and 86 for LIFO. A third
subroutine could be added to return an error

The Review of Accounting Information Systems

Volume 4, Number 3

message if the method entered by the user were
something other than FIFO or LIFO.

After the FIFO or LIFO routine has been
run, the program returns to the operations begin-
ning in line 35. Lines 35 through 42 print the re-
vised inventory records. Two versions of the re-
cords are printed. One is printed for the user to
see, and the other is printed to the temporary
file. Records are printed in the same order as the
original inventory file so the sequence of layers
is unchanged. This is an important step so the
inventory program will work each time it is run.
Layers that were depleted by the current transac-
tion are removed from the file.

After the records have been transferred to
the temporary file, the file is closed (line 43) and
the original inventory file is replaced by the
temporary file. This replacement completes the
updating process. If this program is being used
to illustrate the effect of various transactions on
cost of goods sold and the inventory records us-
ing the original data file, line 44 should be
commented out by placing a # at the beginning
of the line. Otherwise, the updates will be writ-
ten to the inventory file and the original file will
be deleted.

The FIFO and LIFO subroutines are sub-
stantially identical. An important difference is in
lines 49 and 88. The FIFO routine begins with
record number 1 ($i=1) and continues forward
($i++) until all records have been read
(i< =$%nn). The LIFO routine begins with the
last record ($i=%nn) and continues backwards
($i--) until the first record has been read
($i> =0). In the FIFO routine, records are in-
cremented after processing ($i++ in lines 76-
and 80). In the LIFO routine, records are dec-
remented ($i-- in lines 115 and 119).

Line 51 provides a branch for processing re-
cords when the product number in the inventory
file matches the product number for the current
transaction. If a match occurs, three possibilities
are handled. One (lines 55-66) is that the quan-

23

T

tity in the current layer is sufficient to complete
the sale. Two (lines 70-77) is that the quantity in
the current layer is not sufficient to complete the
sale. Three (line 80) is the current layer is not
needed because required units have already been
removed from other layers.

When the first possibility arises, the cost of
the sale ($tcost) increases by the number of units
removed from the current layer (line 58). The
quantity of units in the current layer is reduced
by the number removed (line 59). Also, the indi-
cator $stop is set to 1 to prevent processing of
additional layers. Because the first condition sig-
nals that all costs have been added to the total
cost number, this amount can be returned to the
user (line 63) and the loop can be ended (line
65).

When the second possibility arises, the cost
of the sale ($tcost) is increased by the cost of
units in the current layer (line 73). The number
of units needed to complete the sale ($quant) is
reduced by the number of units in the current
layer (line 74), and the number of units in the
current layer is reduced to O (line 75). Process-
ing then returns to the printing commands in line
35, and the program ends.

Table 3 provides the cost of goods sold re-
turned by the program for each transaction in-
cluded in the exercise.

Table 3
Cost of Goods Sold Computed by
Inventory Program

Product Units Sold FIFO Cost LIFO Cost
Number
1 2 $20 $ 24
1 12 122 142
2 4 12 20
22 22 80 96
Summary

This paper describes a classroom exercise
for examining the business logic segment of an
information system. The exercise uses a simple

The Review of Accounting Information Systems

Volume 4, Number 3

inventory costing situation to illustrate the im-
portance of business rules and data processing in
an information system. Students work through a
series of steps to describe the process of calculat-
ing FIFO and LIFO costs and updating inventory
amounts, to produce a program flowchart to
clarify the logic in the process, to identify the
program steps necessary to complete the task in
an automated environment,-and to create a com-
puter program that will accomplish the necessary
tasks. The last step could involve reviewing and
using a program rather than creating one.

Important learning objectives of the exercise
are for students to understand the role of the
business logic segment, to compare and contrast
the implementation of business rules in auto-
mated and manual environments, and to illustrate
the importance of precision and organization in
developing a computerized information system.
These objectives can help students grasp the rela-
tion between financial accounting and accounting
systems.

Suggestions for Future Research

The exercise described in this paper is a pro-
totype for any number of similar exercises in-
volving various accounting processes. This exer-
cise could be expanded to include other inven-
tory valuation methods (weighted average, for
example) and to incorporate other accounting
rules (such as lower of cost or market). From a
systems perspective, the exercise could be ex-
panded to include a more comprehensive system
development project that included a user inter-
face and a database management system. This
system could be implemented using Access and
Visual Basic. Alternatively, the perl approach
used in the example solution could be imple-
mented using a web browser interface with a cgi

24

script and could use the perl DBI (database inter-
face) module to connect to a standard database
management system. L)

Endnotes

1. A few commercial accounting systems in
fact are offered as stand-alone Access pro-
grams. For example, Advanced Software
provides a version of its UA Corporate Ac-
counting product as an Access program. The
product relies on the Access interface and
database engine, but all of the processing is
in the form of Visual Basic modules.

2. Some textbook authors attempt to guide stu-
dents through the transition by beginning
with a manual, general ledger approach and
moving to a database approach (see Romney
and Steinbart, 2000, for example).

3. The task of sequencing records could be
handled in creating the inventory file used in
this exercise by the SQL commands GROUP
BY for the product number and ORDER BY
for the purchase date if raw data are not se-
quenced.

4. Save the zip file to disk. Unzip the files, and
copy them to c:\perl\bin.

5. If the program is run on a Windows ma-
chine, it can be opened in a standard word
processor such as Microsoft Word or Word-
Perfect. These programs add end of line
markers to program lines that prevent the
program from running on most Unix ma-
chines, however.

References
1. Romney, M. and P. Steinbart, Accounting

Information Systems, 8th ed., Prentice Hall,
Upper Saddle River: NJ, 2000.

