The Review of Accounting Information Systems

Accounting And Visual Basic:
What’s The Connection?

Mark G. Simkin, (Email: Simkin@equinox.unr.edu), University of Nevada
Nancy A. Bagranoff, (Email: Bagranna@muohio.edu), Miami University

Abstract

It is not enough today for accountants simply to know how to use word processing and
spreadsheet software. In the knowledge age, accounting professionals must use in-
Jormation technology to the fullest. The ability to create, process, understand, and
distribute information often determines work productivity, ratings on job performance
evaluations, and even ultimate career successes. Accounting graduates with superior
information technology (IT) skills are highly recruited, valued, and rewarded—these
are the employees who are best able to perform the computer tasks required by their
professional responsibilities. This paper reviews some reasons why today’s account-
ants must be familiar with programming concepts in general, and Visual Basic (VB) in
particular. It also reviews those VB programming tools that are especially useful to

Volume 4, Number 4

accounting applications.

Why Should Accountants Know Basic Programming Skills?

t one point in time, it was sufficient
~/4 for accountants to have only

rudimentary microcomputer skills—
e.g., know how to use a limited word processor
or create a simple spreadsheet. Those days are
gone. Today, a familiarity with the latest ver-
sion of an office suite is mandatory and, in fact
accountants frequently need the full functionality
in database and spreadsheet software to perform
their work. The scope of technology skills has
also expanded considerably, and now often in-
cludes: (1) a working knowledge of accounting
or ERP and tax packages, (2) an understanding
of the operating system software tools needed to
find, create, copy, and delete files and file fold-
ers on different storage media, (3) the ability to
use e-mail and groupware software, (4) expertise
with the Internet as a research tool, (5) facility
with presentation graphics software, (6) ad-

Readers with comments or questions are encour-
aged to contact the authors via email.

17

vanced knowledge of spreadsheet and database
software, (7) knowledge of audit software tools,
and (8) perhaps the ability to use specialized
programs such as graphical documentation soft-
ware [Bagranoff and Simkin, 2000].

In and of itself, the fact that accountants
must know how to use personal productivity
software does not automatically also require
them to know how to program in a procedural
programming language. Over the years, how-
ever, the functionality of personal productivity
software—primarily word processing, spread-
sheet, and database management software and
perhaps to a lesser degree presentation graphics,
operating system, email and groupware, and web
browser software—has been enhanced with the
availability of macro programming languages.
These languages enable end users to create their
own procedures and thus perform tasks that are
unique to the application at hand. For the Mi-
crosoft Office Suite, this macro language is Vis-

The Review of Accounting Information Systems

Volume 4, Number 4

ual Basic for Applications, or VBA, but other
microcomputer software applications such as
dBase, Lotus, and Novell have their own macro
languages [Wildstrom, 1995].

Macro programming languages can help ac-
countants in a variety of ways. A straightfor-
ward use is automating key-stroking tasks, thus
freeing accountants from repetitious typing and
enabling them to automate selected processing
tasks. More advanced applications enable ac-
countants to test input data for accuracy, spare
novice spreadsheet users the need to understand
complex filtering or table-lookup constructs, or
audit spreadsheet models more accurately. Fi-
nally, macro programming language can act as a
bridge between incompatible accounting software
applications [Firester, 1994].

These capabilities also explain why macro
programming languages also serve another im-
portant function—the ability to facilitate end user
programming. Not long ago, accountants de-
pended almost entirely upon the largesse of IT
departments for custom computer work—for ex-
ample, creating non-standard reports. With the
availability of macro programming languages
such as VBA, accountants can often download
data from corporate data warehouses and/or file
servers and create many of their own reports.
But all this hinges upon a working knowledge of
the programming tools required to perform these
tasks—often Visual Basic.

Even if accountants leave most program-
ming tasks to IT professionals, it often makes
sense for them to understand the rudiments of
computer programming. In the design of new
computer systems, for example, one reason for
this need is to avoid the high costs of poor sys-
tem specifications. The idea that accountants
can play an important role in designing the func-
tionality of, and internal controls for, new AISs
is well understood [Moscove, et. al., 1999]. This
includes planning for new capabilities, interfac-

18

ing with existing accounting systems, and of
course, coordinating system implementation
schedules so that they do not inconvenience em-
ployees during important accounting calendar
events. What is less clear is the important role
that accountants can play in creating the detailed
design specifications for such systems, and the
large costs that poor specs can cause. These
costs include the wasted personnel costs caused
by last-minute changes, delays in final systems
implementation, and even lost jobs if things go
badly enough [Lilly, 1998]. Similarly, it is al-
most impossible to test or audit a modern AIS
without a detailed knowledge of what the system
was designed to do. Again, precise design speci-
fications provide exacting details for this, help-
ing IT professionals, auditors, and end users find
bugs before the system is completely installed
and saving hours of unproductive time.

A working knowledge of computer pro-
gramming is also useful to those accountants
wishing to build their own Internet sites. Today,
many CPAs realize that web sites not only help
users locate external information or tax forms,
but are also an important means of recruiting
new employees, communicating with external
clients, distributing expertise, and disseminating
human resource information to employees.
Knowledge of computer programming in gen-
eral, and web site development in particular, can
help accountants create such sites, or at least bet-
ter design the specifications for one that an inde-
pendent contractor creates [Cayton, 1966].

Finally, a side benefit to learning proce-
dural-language programming is that it enhances
the critical thinking and problem-solving skills
that are vital to success in many accounting ca-
reers. Examples of such skills include deductive
logic, systematic analysis and design, and fore-
casting. These skills are useful in a variety of
non-programming accounting environments as
well—for example, in performing forensic tasks
or audit work.

The Review of Accounting Information Systems

Volume 4, Number 4

Visual Basic And VBA: What’s The Differ-
ence?

Both Visual Basic (VB) and Visual Basic for
Applications (VBA) are Windows-based, Micro-
soft products that allow their users to develop
32-bit, interactive, event-driven code. Here, the
term “event-driven” means that what triggers a
computer to execute code (i.e., program instruc-
tions) is usually a user event such as clicking on
a Command Button, pressing the Enter key, or
exiting a dialog box. Those accountants familiar
with earlier versions of Basic language such as
GW Basic or Quick Basic are likely to recognize
fragments of modern VB code because they con-
tain the familiar If tests, Do Loops, and assign-
ment statements that were part and parcel of
these predecessors.

It is important for accountants to realize that
“Visual Basic” and “Visual Basic for Applica-
tions” are not quite the same. They are more like
close cousins than fraternal twins. Visual Basic,
for example, is a complete procedural computer
language that allows programmers to develop

familiar, Windows-based applications. The pro-
gramming environment for VB is the VB Devel-
oper’s Studio (Figure 1). This environment al-
lows programmers to develop complete user in-
terfaces in design time, and then test the applica-
tion in run time to see if it operates correctly.
Most Windows-based accounting software utilize
the standard tools this environment provides—for
example, the Labels (that provide headings, user
instructions, or identifications), TextBoxes (for
entering data), and CommandButtons (for trig-
gering code) illustrated in the user interface por-
tion of Figure 1.

In contrast, VBA is just that—a subset of
Visual Basic tools that enable developers to cre-
ate programming instructions for specific appli-
cations. VBA is accessible from all major ap-
plications in Microsoft Office 2000, but the pro-
gramming environment is mostly the application
itself—for example, a specific Excel spread-
sheet—rather than a design studio [Grauer and
Barber, 2000]. Even the names for the applica-
tions differ—“user interface” in the case of VB,
“macro” in the case of VBA.

Figure 1 Visual Basic’s Design Studio

5. Priet - Microsoft ¥isual Basic [dign] ~JirmDemo]]v

Y¥B toolbox, with
components that

Demonstration In

terface

the programmer
adds to theuser
interface as

needed

User interface at
design time

Space for
adding
Active X
tools

This is "an example of avl's;tbel
with an enhanced border B

!User enters data here

19

The Review of Accounting Information Systems

Volume 4, Number 4

The “applications orientation” of VBA code
in Excel or Access is no accident. It allows end
users to create their own applications without
also requiring them to have the advanced pro-
gramming skills of IT professionals. This orien-
tation also allows users to focus on the task at
hand—for example, testing the data in user en-
tries—within the context of the worksheet or da-
tabase table itself. :

Perhaps the most important difference be-
tween VB and VBA to accountants is that VBA
provides a macro recorder. This tool enables
the system to “capture” user keystrokes, and
generate Visual Basic code that represents the
tasks or procedures these keystrokes perform.
This enables the user to automate a specific
process—for example, testing designated data en-
tries for accuracy—and therefore also has the po-
tential to ensure better data inputs and concomi-
tant outputs. But it is as vital that an accountant
understand the code such macro recorders gener-
ate as it is important that they understand how to
use such recorders. This knowledge enables ac-
countants to create and later modify their own
macros, as well as attest to the accuracy of a cli-
ent’s macros, should this be required in an audit
of the spreadsheet.

Understanding Visual Basic Code

Like other programming languages, Visual
Basic programs are composed of three basic con-
structs: (1) sequential or linear code, with in-
structions that follow one another and that a
computer executes in sequence, (2) selection
statements, that enable a computer to choose be-
tween different processing alternatives, and (3)
looping or repetition statements, that enable a
computer to repeatedly execute a set of instruc-
tions until a specified exit condition is met. The
discussions which follow examine each of these
constructs in turn, focusing on Visual Basic cod-
ing examples that are typically found in familiar
accounting environments and applications.

20

Linear Code

Linear instructions are programming state-
ments that a computer executes in order. We
shall look at four types of such instructions: (1)
VB methods, (2) assignment statements, (3)
computational instructions, and (4) instructions
using functions.

VB Methods

Some of the simplest instructions, called
methods in VB parlance, are those that perform
simple tasks. Three examples are:

Beep ‘Causes a computer to beep audibly

Print “This is what will be printed.” ‘Print
something on the interface

MsgBox “Hours worked must be between 0
and 40.”,vbCritical, “Error”

The first instruction causes a computer to
make a sound—the familiar “beep” that users
hear when they make an error. This beep is an
important internal control over data entry, re-
ferred to as a program edit check. Accountants
can control data input, for example, in a Micro-
soft Access database application by limiting the
acceptable data input set in a form. The data-
base developer can program the Beep in VB or
the software will do it automatically based on the
specified validation rules in the database model.
The second instruction prints the words in quota-
tion marks directly on the user interface. The
third instruction causes the computer to display
the MessageBox shown in Figure 2. (A Mes-
sageBox uses three parameters, the first of which
is the message itself, the second of which deter-
mines what icons and CommandButtons appear
in the window, and the third of which determines
the heading at the very top of the window.) The
text to the right of these instructions beginning
with apostrophes, are comments that the com-

The Review of Accounting Information Systems

Volume 4, Number 4

Figure 2 An example of a MessageBox

puter will ignore during execution, but which are
nonetheless useful for documenting the code and
explaining what is accomplished. Such comments
make programs easier to fix or modify later.

Assignment Statements

A second example of sequential code is an
assignment statement that sets a processing vari-
able, TextBox, or other Visual Basic control to a
specified value. An example of such an instruc-
tion that might be recognizable to those familiar
with VBA coding those is:

nHoursWorked = InputBox(“Please enter a
value for hours worked.”)

This instruction causes a computer to display
the simple dialog box illustrated in Figure 3—an
InputBox. (The difference between an InputBox
and a MessageBox is that an InputBox allows the
user to input a value, whereas a MessageBox
merely displays a message—the user cannot enter
new data with it.) As you may already know,
both InputBoxes and MessageBoxes are modal,
meaning that the user cannot continue until he or
she has responded to the dialogue box—for ex-
ample, by clicking on the OK button.

A second type of assignment statement is
one that enables a programmer to assign values
to programming variables—i.e., to elements that
the end user cannot see, but which nonetheless
enable a program to function. These are good
internal controls and examples are:

nHoursWorked = 40
to a default value of 40

PayRate.Text = 9.75
box to $9.75

nPayRate = nMinRate ‘Set the pay rate
variable to the specified minimum

‘Set hours worked

‘Set pay rate text-

Assignment statements initialize the variable
or other element on the left side of the equation
to the value on the right side of the statement.
Thus, in the first example, the instruction initial-
izes the variable nHoursWorked to “40.”

Figure 3 An

21

example of an InputBox

The Review of Accounting Information Systems

Volume 4, Number 4

You might wonder about the difference be-
tween the second or third instructions in this ex-
ample. The second example sets the value of a
TextBox (which the user can see in a user inter-
face and perhaps modify) to “9.75.” In contrast,
the third example sets a variable called “nPay-
Rate” (which the user cannot see) to the value of
a second variable called nMinRate. Why set one
variable equal to-another? In this case, nMin-
Rate is a parameter value that the program ini-
tializes once at the beginning of the program,
and then uses repeatedly throughout the applica-
tion as needed. If the nMinRate changes (for ex-
ample, due to a change in state or federal law),
the modifications required to reflect this change
are nominal—the new value need only be entered
once. This again helps make it easier to modify
computer programs as needed.

Computations

Yet another type of linear code is a state-
ment that performs a computation. Two exam-
ples are:

nGrossPay = nHoursWorked * nPayRage
‘Gross pay if hours worked < 40
nGrossPay 40*nPayRate +
1.5*(nHoursWorked - 40)* nPayRate
‘Gross Pay if overtime

The first instruction computes the gross pay if an
employee works 40 hours or less, and the second
instruction computes the gross pay if an em-
ployee works more than 40 hours and earns time
and a half for overtime.

The functionality and processing capabilities
of most accounting programs are usually deter-
mined by assignment statements such as these
that perform calculations. Surprisingly, how-
ever, the vast majority of instructions within VB
programs are nof computational. Rather, they
do other things—especially test data for accuracy
and completeness, two data characteristics with
which accountants are particularly concerned.

22

Using Functions

There are many other examples of linear
statements, but we shall only look at one final
example—statements that use functions to over-
come data type problems. To begin, it is neces-
sary to know that Visual Basic enables its users
to store numerical data in a large number of dif-
ferent formats called data types. Examples in-
clude Integer, Single Precision, Double Preci-
sion, Long Integer, String (Text), and Currency.
The selection of a specific data type tells Visual
Basic how to store the data—i.e., the specific bit
configuration to use for the data element.

Although the intricacies of such data stores
are probably of little interest to accountants, they
are nonetheless important because the choice of
data type sometimes determines the way in
which Visual Basic performs computations as
well as almost always determines the format in
which Visual Basic outputs computed results.
To illustrate, suppose you input two numerical
values in each of two InputBoxes and then at-
tempt to add the two values together. The code
looks like this:

nRegularHours = InputBox (“Input the Num-
ber of Regular hours worked.”)

nOverTimeHours = InputBox(“Input the num-
ber of overtime hours worked.”)

nTotalHours nRegularHours
TimeHours

+ nOver-

If the user inputs “40” for regular hours and “5”
for overtime hours, the unexpected total is 405!
The reason is because InputBox values are string
data types, not numerical values. Thus, when
Visual Basic encounters the third instruction, it
will concatenate the strings rather than add the
values together. To overcome this problem, the
programmer must use Visual Basic’s Val func-
tion to perform the math as follows:

nTotalHours Val(nRegularHours)
Val(nOverTimeHours)

+

The Review of Accounting Information Systems

Volume 4, Number 4

Here, the Val function will first convert nRegu-
larHours to a numeric value, which Visual Basic
will then interpret correctly and manipulate ac-
cordingly.

Developers will encounter a similar data
type problem when they use certain Visual Basic
data types to prepare outputs. For example,
consider the following VB instruction:

txtOutput. Text = 40/3

This instruction divides 40 by 3, and then dis-
plays the results in a TextBox. But the resultant
output is “13.33333,” even if the user wants
only two-decimal place accuracy.

To overcome such problems (as well as sev-
eral others), Visual Basic provides a Format
function (in both VB and VBA) that enables us-
ers to convert numerical values from one data
type to another. An example is:

TxtOutput.Text = Format(40/3, “Currency”)

In this example, the value to display is the first
argument in the function (i.e., “40/3”) and the
second argument is the data type setting that
Visual Basic should use for this (i.e., “cur-
rency”). The resultant output is “$13.33.” Other
formatting settings include Integer, String, or
Date. Visual Basic also supports the custom data
masks familiar to Access users. An example is:

txtOutput.Text = Format(40/2, “###.00”)

In this example, the mask “###.00” uses pound
signs to the left of the decimal point as place
holders, and the zeros to the right of the decimal
point as values that Visual Basic will replace
with significant digits if it computes any, or
leave as “0’s” otherwise. This explains why, for
the current example, the resultant output will be
“20.00”—not “20.”

Those accountants who dismiss VB and
VBA formatting capabilities as esoteric trivia or

23

of little value are in for a big surprise when they
attempt to create mailing lists using Access and
Word. In order to export numeric values (such as
averages) that are computed from the data fields
of an underlying database to Microsoft Word in
a desired format, for example, the Access query
must first contain exactly such a Format instruc-
tion in order to display the calculations properly

- in the letter. :

Selection Code

Selection instructions enable computers to
make decision choices—for example, to deter-
mine which of several processing alternatives to
use. A key example in accounting applications
is to test input data for accuracy and complete-
ness. As a general rule, the data in accounting
databases must be completely, numbingly accu-
rate because the costs of inaccurate data (e.g., an
incorrect credit card number) are so high. Thus,
the processing task is to examine a specific input
value and decide whether or not to accept it.

The two most common selection statements
in Visual Basic are the If tests familiar to many
Excel and Access users, and Select Case state-
ments. In accounting applications, one of the
most common uses of selection statements is to
determine whether or not an input value is ac-
ceptable. An example of an If clause, which in-
cludes both the If test and the processing to per-
form if the test proves positive, is:

If txtHoursWorked.Text = Clear Then ‘Test
for blank value
Beep ‘provide audio feedback

MsgBox “Error. Please enter a value for
hours worked.”
Exit Sub
End If

‘Exit subroutine

The If test in this example is testing for a
blank TextBox. (The word “Clear” is a VB re-
served word that tests for null values.) If this
condition is true, the computer will execute all
the other (indented) instructions within the

The Review of Accounting Information Systems

Volume 4, Number 4

clause. If this condition is false, the computer
will ignore the entire clause and proceed to the
next instruction following the “End If” state-
ment. As you can see, the instructions in this ex-
ample test for a blank TextBox, and indicate
what to do if the user provides one. Other ex-
amples of data validation tests include range
tests, matching tests, tests of data completeness,
and tests for valid codes—see Figure 4.

Where there are several acceptable data en-
tries for a given TextBox or InputBox, pro-
grammers often find it easier to use a Select
Case clause to test for them. For example, sup-
pose a computer application must test a state
code, and compute the sales tax according to the
user’s home state. A (simplified and fictitious)
example of such a situation would be:

Select Case txtStateCode.Text ‘state
code is the selector variable
Case “NY”, “NJ”, “VT”, “WV”, “HI”
nTaxRate = .08
Case “MS”, “OK”, “NV”, “CA”, “FL”,
“GA”
ntaxRate = .085
Case “MA”, “CT”, “NC”, “CO”, “UT”,
«A77
nTaxRate = .09
Case Else
Beep
MsgBox “Error. Unrecognizable state
code. Please reenter.”
Exit Sub
End Select
nTaxAmount.Text =
chaseAmount

nTaxRate * nPur-

Figure 4 Examples Of Data Entry Validation Tests

Type of test Example of If Test*
Test for Blanks If txtHoursWorked = Clear then
Range Test If nHours <0 or nHours > 40 then
Matching Test If nPass1.Text < >nPass2.Text Then

Completeness Test

Code Test

If Len(nSSN) < > 9 Then

If nGender < > "M" And nGender < > "F"
Then

* Note: "< >" means "not equal to" in Visual Basic

Comments
"Clear" is a Visual Basic key word

Tests for hours less than O or
more than 40

Tests whether a user enters
the same password correctly in
two successive TextBoxes.

Len function computes the length,
in bytes, of a variable. This example
tests for a nine-digit social security
number

Gender must be either "M" or "F"

24

The Review of Accounting Information Systems

Volume 4, Number 4

In this example, Visual Basic uses the state
code in the TextBox called “txtStateCode” as the
selector variable—i.e., the variable to test. If
this value matches any of the state codes in the
first Case (i.e., NY, NJ, VT, WV, or HI), Vis-
ual Basic will set the tax rate variable
(nTaxRate) equal to 8 percent and then exit the
Select clause. Similar logic applies to the second
and third Case possibilities. Finally, if the sys-
tem does not find any matches, the “Case Else”
portion of the Select Case clause triggers. Here,
we see our now-familiar error routine instruc-
tions, which cause the computer to Beep, display
an error message, and exit the procedure.

Loop Code

As noted above, a third possible program-
ming construct creates processing loops—i.e.,
instructions that execute repeatedly until the
computer encounters a termination condition.
These looping constructs, for example, enable a
computer to prepare payroll checks for a set of
employee time cards, or compute the present
value of a stream of future payments.

Two important VB loop clauses are For-Next
Loops and Do-While Loops. To illustrate, let us
assume that an accounting application must com-
pute the present value of a stream of equal future
values. The formula is:
n
Present Value = ¥ A/(1+R)*

k=1

where n the number of years, A the
amount received each year, and R = the interest
rate. Although Visual Basic provides a function
for this, it is also instructive to see how one
might program this in Visual Basic using a For-
Next loop. The following instructions assume
that the variables nYears, nRate, and nAmount
have been initialized elsewhere in the program:

nSum = 0
For K = 1 to nYears

nSum = nSum + nAmount/(1+nRate)"K
Next K

25

txtPresentValue. Text
rency”)

Format(nSum, “Cur-

In this code, the For and Next instructions
create a repetitive loop, which Visual basic will
execute the prescribed number of times—for ex-
ample, five times if nYears equals “5.” In each
successive pass through the loop, the system will

~compute a value for “nAmount/(1+nRate)"K”

(the * stands for exponentiation), and succes-
sively add this value to the accumulator variable
nSum. Finally, after completing its work, the
system will exit the loop and execute the instruc-
tion immediately below the Next instruction.
That final instruction will display the results in
the TextBox called “txtPresentValue,” format in
currency fashion as described above.

A Do-While Loop is similar to a For-Next
loop in that it, too, creates a set of instructions
that a computer will execute repeatedly until it
reaches a termination condition. A simplified
example of such a loop is:

Do While Not EOF(1)
[other processing instructions]
Loop

In this example, the termination condition is
“Not EOF(1)”—i.e., “not end of file #1.”
There will typically be a large number of proc-
essing instructions inside such a loop, but the
very final one will always be “Loop”—which
tells Visual Basic to transfer control to the very
first instruction and test for end of file again. If
it has not been reached, the system will execute
the internal processing instructions yet again,
and repeat this process until end of file is
reached.

Summary And Conclusions

There are many reasons why accountants
should have basic programming skills and be
familiar with programming concepts. High
among them is to be more computer literate,
functional, and productive when using the mac-

The Review of Accounting Information Systems

Volume 4, Number 4

ros that accompany such office productivity tools
as Microsoft Word, Excel, or Access. Other rea-
sons include the need to help clients with end-
user programming tasks, audit the macro instruc-
tions found in client spreadsheets or databases,
better prepare the controls and system specifica-
tions for larger computer systems, create better,
more functional web sites, and improve their
critical-thinking and problem-solving-skills.

Visual Basic (VB) and Visual Basic for Ap-
plications (VBA) are not the same, but the dif-
ferences are nominal. Visual Basic is a com-
plete, procedural programming language that IT
professions typically use to create fully func-
tional systems for end users. Visual Basic for
Applications is a subset of VB, and is typically
employed by end users to accomplish processing
tasks for themselves.

The final portion of this paper reviewed
three types of Visual Basic instructions: (1) lin-
ear code such as VB methods and assignments
statements that use computations or functions,
(2) selection code such as If tests and Select Case
statements, and (3) looping code such as For-
Next statements and Do-While statements. Un-
derstanding these constructs can help accountants
create better macros for themselves, better audit
the macros of their clients, and better understand

26

how computers test input data for accuracy and
completeness. (L

Bibliography

1. Bagranoff, Nancy A. and Mark G. Simkin
“Picture That: How to Tell the Story With
Graphics” Journal of Accountancy (Febru-

-ary, 2000), pp. 43-46.

2. Cayton, Brian “Build Your Own Internet
Site” Accounting Technology Vol. 12, No. 9
(October, 1996), p. 41ff.

3. Firester, Jonathan “Accounting Software
Macro—Painting Yourself Out of a Corner”
Accounting Technology Vol. 10, No. 11
(December, 1994), p. 8.

4. Grauer, Robert T. and Maryann Barber “A
VBA Primer: Extending the Power of Mi-
crosoft Office” (Upper Saddle River, New
Jersey: Prentice Hall, 2000).

5. Lilley, Vic “How to Avoid the High Cost of
Poor Specifications” Accounting (December,
1998), p. 26.

6. Moscove, Stephen A., Mark G. Simkin, and
Nancy A. Bagranoff Accounting Information
Systems 6™ ed. (New York: John Wiley and
Sons, 1999).

7. Wildstrom, Stephen H. “Programming
Without Tears” Business Week Issue 3418
(April 3, 1995), p. 18.

