The Review of Accounting Information Systems

Volume 3, Number 2

A Framework For Implementing
Business Rules In Multi-tier
Accounting Information Systems

Randy Weinberg, (E-mail: Randy2 +@andrew.cmu.edu), Carnegie Mellon University
Jim Q. Chen, (E-mail: Jchen@St. CloudState.edu), St. Cloud State University
John J. Cheh, (E-mail: cheh@uakron.edu), University of Akron

Abstract

This paper discusses design and implementation of business control rules in a multi-
tiered, transaction oriented Accounting Information System (AIS). Business rules de-
scribe an organization's policies and business practices. Implementing business rules
as a component of an AIS provides many benefits: maintainability, centralization of
business rules and controls, and simplification of system design and implementation.
At its most basic level, a three tiered application consists of a thin user interface, a

business services layer, and a database layer.

The business services layer contains

business rules and application controls. The database layer implements the database,
various field level controls and referential integrity.

Introduction

eveloping and maintaining high qual-

ity client/server transaction oriented

information systems has always been
an expensive and difficult activity. Best system
development methodologies take into account
various non-functional factors including design
time, system performance, quality, maintainabil-
ity, portability, and reuse. Frequently, however,
current development practices and processes do
not successfully address these issues. This is in
part due to the overall design paradigms used to
implement today's complex information systems.

Many developers have implemented
database/client-server systems in two parts: a
user interface residing on a user's workstation
and a database residing on a server system. The

Readers with comments or questions are encour-
aged to contact the authors via e-mail.

41

user interface provides the interaction with the
user and enables a user to enter, edit, and re-
trieve application data. It contains application-
specific objects and logic including forms, re-
ports, and queries, database programming logic,
error checking, application level controls, and
enforcement of business rules. The database
component provides the logical and physical im-
plementation of the application's data. It pro-
vides a low level data interface, usually imple-
mented via Structured Query Language (SQL)
and is capable of enforcing various levels of se-
curity and data integrity through the use of vali-
dation rules, stored procedures, and triggers.

While this implementation separates the
underlying database structure and implementa-
tion from its applications, the two are, in prac-
tice, tightly coupled. Changes to one component
can necessitate costly changes to the other. Op-



The Review of Accounting Information Systems

Volume 3, Number 2

portunities for reuse of code or design are lim-
ited and frequently, the same controls and logic
must be implemented in multiple forms, queries,
and reports. Further, since all data access is
done programmatically, the underlying data
model and access methods must be built into the
user interface level objects. User interface de-
velopers must also be aware of optimizing tech-
niques for SQL performance and data naviga-
tion. Further, business policies must be articu-
lated and implemented, with complex logic fre-
quently split between the two layers. This in-
creases the skill level required by all developers.
As the underlying data architecture evolves,
these embedded techniques may no longer prove
adequate. In fact, many existing applications
cannot be easily modified to reflect changes in
business policies or rules or the underlying data-
base design or technology. Further, any changes
to the application controls or business rules must
be propagated throughout all objects referencing
the database. Modifications are costly and time
consuming because the database transport code is
spread out throughout the application-specific
code. To realize greater efficiencies and poten-
tial for component reusability, a multi-tiered ap-
proach using a business rules component can be
of great benefit to an organization.

In the following sections, a brief review
of client-server model is provided and business
rules and their implementations in database ap-
plications are discussed. A three tiered client-
server model for transaction oriented database
systems design is then proposed. Finally, the pa-
per discusses some of the benefits of the new
model and the future research opportunities.

Figure 1
A Basic Client/Server Computing Model

Network

Server Client

< >

42

Client Server Computing And Business Rules

Client/server is a computing model for
distribution of functions between two types of
independent and autonomous processes: servers
and clients. A client is any end user application
that requests specific services from server proc-
esses. A server is a process that provides re-
quested services for clients (Rob and Coronel,
1997). In a common business scenario, several
client computers are connected to one or more
servers in a network. A client can request serv-
ices from servers without regard to the location
or the physical characteristics of the computer
(see Figure 1).

Client/server architecture has become a
popular model for modern business data proc-
essing. A typical client/server application con-
sists of a graphical user interface on the client
end, an SQL compliant database on the server
end, and business rules distributed between the
client and the server. Various application devel-
opment tools have been developed to automate
the design processes of both client and server
side operations, including as the creation of GUI
and SQL queries. However, most of these rapid
prototyping tools provide little support in for-
mulating and implementing business rules
(Baum, 1995). The business rules and database
processing logic, the core of sophisticated appli-
cations, often demand the most effort in system
development.

Business rules are statements that define
or constrain some aspect of the business; they
provide substantial value to an application.
Business rules may reflect accounting controls in
an e-commerce application, for instance, or they
might reflect certain business policies. For ex-
ample, a business rule in a truck rental agency
might be: "A rental truck with accumulated
mileage greater than 6000 since its last service
must be scheduled for service." Some of the
rules are clearly stated, while others are implicit.



The Review of Accounting Information Systems

Volume 3, Number 2

Business rules are derived from organi-
zation's policies, procedures, and standards. As
such, business rules may require frequent up-
dating to reflect dynamic business environments.
Unfortunately, existing tools and techniques
make this difficult since the rules are buried deep
in procedural code or as complex database com-
mands in SQL.

A Three-Tier Architecture

Realizing a three-tiered application
model requires a "thin" client application, an in-
termediate "business rules" layer, and a database
layer implementing the actual database (see Fig-
ure 2). The client application provides end user
interface services and allows for entering, edit-
ing, and displaying of data. The intermediate
layer is a collection of services for data access
control, data validation and manipulation, and
enforcement of business rules. The database
server provides "data services." Logic is di-
vided among these various logical layers. If
properly designed, this type of design can sim-
plify application development and reduce the du-
plication of data access specific code, controls,
and validation rules.

Figure 2
A Three Tiered Client/Server Model

Clients (user interfaces)

i

Business Services

!

Servers (DBMS)

The User Interface

The user interface layer
user interaction.

responds to
It is responsible for enabling

43

the user to enter, edit, retrieve, save, and display
data. Reports, queries, forms and other user-
visible application specific objects are defined
and maintained in the user interface. In a three
tiered design, the user interface contains no da-
tabase specific code or references.

Objects in the user interface respond to
user activities via event handlers. Through event
handlers, various application specific controls
and general data validation can be done prior to
database updates. Specifically, user interface
controls typically check for data typing, reason-
ableness of data, limits, validity of data, invalid
combinations of items, and self checking digit
algorithms (Rittenberg and Schwieger, 1997;
Summers, 1991).

The user interface layer makes requests
to the business services layer to connect to the
database and to access records in the database.
The various functions, objects, and services de-
fined in the business services layer are visible to
the user interface through predefined function
calls or object methods. Since the user interface
level contains largely application specific ob-
jects, it is almost entirely non-reusable.

Business Services Layer

The business services layer acts as an
interface between the application front end and
the actual database server. Conceptually, the
primary objective of this layer is to eliminate de-
pendence of client-side applications on underly-
ing database implementation. This layer is re-
sponsible for all communications between an ap-
plication and its external data sources. It trans-
lates all requests for database services into the
specific operations required by the underlying
database. It is responsible for loading, sorting,
validating, and formatting data, as well as en-
forcing business rules. The business services
layer is called on to populate the controls in the
user interface forms.

Various objects or modules are imple-



The Review of Accounting Information Systems

Volume 3, Number 2

mented in a business services layer to maintain
access to the database and to enforce common
application controls and business rules. Public
methods are provided so that interface develop-
ers can activate the procedures necessary to in-
voke these services. Specifically, the business
services layer performs two main functions:

First, it acts as a transport utility, mov-
ing data between the front-end application and
the data server. It centralizes data access and
common code for fetching and saving data. Spe-
cifics of data access objects and methods are en-
capsulated in the transport services. Thus, data-
base objects like recordsets, snapshots, SQL
commands, and ODBC handles are all encapsu-
lated in the business services layer. Examples of
functions implemented in this layer, yet available
to the interface designers, could include opera-
tions such as register customer, delete customer,
and various database queries. This is largely ap-
plication specific code, mostly non-reusable out-
side the application's boundaries, yet reusable by
all forms or user interface objects that must per-
form these functions.

Second it enforces business rules and
provides validation services, data manipulation.
These routines are tied to the database but may
be common to applications that use it. Business
rules describe policies, procedures, or principles
within a specific business environment. They
can be enforced by procedures or triggers. For
example, the rule, "a training session cannot be
scheduled for less than ten people or for more
than thirty people," can be enforced by a proce-
dure that checks the enrollment figure before the
scheduling of the session is allowed. Business
rules are in addition to rules for maintaining the
domain and referential integrity of tables in a
database. Typical business rules implemented
could include operations such as validation of
customer accounts and credit limits, checks on
legitimacy of transactions, and review of past
transactions.

Reuse is enabled when common routines

44

are centralized in a business services layer.
Needed services can be invoked from objects in
the user interface as needed. This approach of-
fers the following potential benefits:

Database abstraction: Changes to the underlying
database access methods, database design and
implementation can be made without the need to
change user objects like forms, reports, data en-
try screens, and queries.

Increased modularization: Different personnel
can work on different components of the overall
application.

Reuse: Common routines are centralized and

reusable.
The Database Layer

The database layer provides data access
services to the business layer. It also imple-
ments built-in field level validation and rules,
and user access controls. The database layer re-
trieves data, saves data, and modifies data as re-
quested by the business services layer. All re-
turned data is passed back to the business layer
for further processing and presentation to the
user interface layer. Any errors in validation or
data access are returned to the intermediate layer
for handling.

These controls are implemented through
the use of stored procedures, triggers, and vali-
dation rules that are stored with the database.

Triggers: A trigger is a procedure executed by
the database management system whenever the
business services layer requests to modify the
data in a specific table. Triggers usually occur
prior to the execution of Insert, Delete, or Up-
date statements so that the effect of the statement
on referential integrity can be examined. In a
customer order system, for instance, when an
order is placed, a trigger could be executed to
see if the customer exists and has an available
line of credit.



The Review of Accounting Information Systems

Volume 3, Number 2

Rules: A rule controls what an application can
or can not enter into the column of a table. This
allows the database administrator to control the
data in the database. For example, a rule could
be written to prevent duplicate keys or invalid
information. Rules for maintaining relationships
between tables and enforcing referential integrity
can be defined.

Stored Procedures: Stored procedures are pro-
grams using SQL statements, control statements,
and variables to manipulate data on the server.
They are executed on the data server with the re-
sultant data items, messages and errors being
returned to the business services layer.

Conclusion

In a multi-tiered approach to cli-
ent/server application development, various
tiers, or layers, are implemented. Typically
there are layers for the user interface, an inter-
mediate layer to provide enforcement of business
rules and data access services, and a database
layer. Implementing business rules in an inter-
mediate layer can help to centralize and segre-
gate the business logic from the user interface
and the database layers. A key advantage to this
approach is that developers and business analysts
do not have to encode complex business proc-
essing and rule enforcement in the user interface
layer or create and maintain complex database
triggers and stored procedures.

The user interface layer interacts with
the end user. It allows for data entry, edit, and
display as well as report generation and running
queries. The user interface layer is highly appli-
cation specific; it contains code specifically
written for forms, reports, and other user ob-
jects.

The intermediate layers encapsulate all
data access methods and provide services to the
user interface layer. These services act as in-
termediary between the user interface layer and
the network or database. These layers imple-

45

ment database specific procedures for linking to
a database, manipulating the database, and im-
plementing business rules. Services in this layer
are available to the user interface via public
function, or procedure calls. From the point of
view of the user interface, all access specific
logic is embedded, or hidden in this layer.

The database layer implements the logi-
cal and physical view of the data and provides
standardized data access mechanisms to the data
access layer. Various stored procedures, trig-
ger, and validation rules are implemented in the
database to provide low level field and intra-
record validation.

Suggestions For Future Research

Future research should investigate how
to make specification of business rules a part of
conceptual modeling. Various software engi-
neering and reengineering tools are appearing in
the marketplace to assist developers in definition
of their business rules. Evaluation of these tools
in live practice is a natural next step for re-
searchers interested in improving the quality of
client/server application design and implementa-
tion. Dynamic business rules derived from data
mining operations and artificial intelligence tech-
niques may be on the horizon.

References
1. Baum, David, "The Right Tools for Cod-

ing Business Rules," Datamation, Vol.
41, No. 4, pp. 36, 1995.

2. Rob, Peter, and Carlos Coronel, Database
Systems: Design, Implementation, and
Management, 3™ Edition, Course Tech-
nology, 1997.

3. Rittenberg, Larry, and Bradley 1.
Schwieger, Auditing Concepts for a
Changing Environment, 2nd Edition, The
Dryden Press, 1997.

4. Summers, Edward L., Accounting Infor-

mation Systems, 2nd Edition, Houghton
Mifflin Company, 1991.



The Review of Accounting Information Systems Volume 3, Number 2

46



