The Review of Accounting Information Systems

Volume 3, Number 3

Deriving Accounts Receivable
In An Events-Based,
Relational Database System

Alan S. Levitan, (E-mail: levitan@louisville.edu), University of Louisville

Abstract

Database designers face certain challenges in seeking to derive accounting numbers,
such as accounts receivable, from an events-based relational database system. An
ideal solution would record raw events uniquely in events tables, where the data are
nonredundant and normalized. The actual implementation of this solution is not triv-

ial, but it can be a rewarding exercise.

Introduction
ith the continuing popularity of
/I/U relational database platforms, ac-
counting systems designers are
challenged to use this tool to its full advantage.
In addition, the adoption of events-based infor-
mation systems requires careful data modeling to
capitalize on all of the potential from the events
approach.

Events-based systems collect relevant
data about business events and leave these raw
data in tables. The tables, in turn, can later be
aggregated, queried, combined, and summarized
in many different ways, to satisfy the view of
any authorized information customer. The the-
ory underlying this resource-event-agent model-
ing approach was first described by William
McCarthy (1982).

In the Revenue, or Sales/Collection,
business cycle, for example, one would record
sales (shipment) events as they occur. Similarly,

Readers with comments or questions are encour-
aged to contact the authors via e-mail.

47

one would record cash collection events as they
occur. Then, accounts receivable may be de-
rived at any time by subtracting information in
the cash collection table from information in the
sales table.

This approach, now a fundamental con-
struct for a textbook by Hollander, Denna, and
Cherrington (1996), offers many advantages
over traditional architecture. With data main-
tained in the tables in primitive form, the un-
derlying facts are always available. New tables
need not be created to summarize the data into
journals, ledgers, trial balances, or financial
statements. Yet, these traditional forms of
documentation exist in virtual form. They may
be created from the tables at any time with the
use of queries, forms, and reports. This elimi-
nates useless redundancy, retranscription and
summarization, which were valuable for catching
mistakes in manual processing days but which
today have costs in excess of benefits. Storage
space and human effort can be saved. And a
change made in any table need be made only in
that one place. Any query, form, or report

The Review of Accounting Information Systems

Volume 3, Number 3

which uses that table will reflect the new data
immediately. (Of course, proper controls over
the recording of data are essential.)

The disaggregated data repository, then,
supports multidimensional user views of the
data. Unlike traditional architecture, in which
aggregations are directed toward the financial
view only, the raw data may be integrated in re-
sponse to any information customer, financial,
managerial, or other. The underlying data in the
tables are stored only once, providing consistent
information in support of cross-functional teams.

The system eliminates unnecessary, ex-
cessive summarization of data. More impor-
tantly, however, the data in its primitive form
permit a wide variety of reporting options. For
example, not only can the system produce cur-
rent accounts receivable but, through selection
criteria in the queries, it can also produce a
value for accounts receivable at 2:15 pm last
Thursday. Or, to track lost or suspicious activ-
ity, it can produce a list of cash collected be-
tween 9 am last Monday and 1 pm on Tuesday.
The objective, then, of recording and storing
event data once and maintaining them in raw
form is worth pursuing.

Implementation Issues

While the theory is compelling, its im-
plementation can be challenging. Using the
popular relational database system Microsoft Ac-
cess, the solution is not trivial. But a systematic
realization of that solution is important, and is
described in this article.

Laurence Paquette (1998) proposed one
inventive method for solving this problem. He
used a cash Receipts table, which contained a re-
cord for each receipt, and a Customer table,
which contained a debit field and a credit field
for each customer. This Customer table is es-
sentially an accounts receivable subsidiary
ledger. Consistent with sound design standards
on user interfaces, he created a form, bound to

48

the Receipts table, for data entry into that table.
Then, by creating Access Basic code using an
After Update event procedure for the form, any
addition of a record in the Receipts table via the
form would trigger the update of the credit field
in the Customer table. (Presumably, there
would be a similar event procedure to update the
debit field in the Customer table as records are
added to a Sales table.)

In this article, I will propose an alterna-
tive method for reporting accounts receivable,
one which is more compatible with database de-
sign principles about redundant data. Recogniz-
ing this principle, Paquette properly did not in-
clude a “balance” field in his Customer table,
which would have been computed as the debit
field minus the credit field, because, as he cor-
rectly asserted, “Good database design specifies
that such fields be omitted from the table reduc-
ing the chances of inconsistencies from occurring
in the future” (ibid, p. 45).

This principle is true, and can be car-
ried further. To eliminate more thoroughly the
possibility of future inconsistencies, it would
have been preferable not to have the basic data
on cash receipts stored in two separate tables.
That is, the inclusion of the dollar value of a
cash receipt stored in the Receipts table, and also
summarized in the Customer table, violates the
principle of normalization. Unnormalized data-
bases may lead to the storage of redundant, in-
consistent, and anomalous information within ta-
bles (Perry and Schneider, 1999, p. 119). A
better solution will not have an accounts receiv-
able subsidiary ledger. Rather, such a ledger
may be derived virtually, from events tables.

Database designers must avoid potential
inconsistencies, known as update anomalies, that
may arise as a result of not changing every oc-
currence of an item of data (Romney, Steinbart,
and Cushing, 1997, p. 142). A commonly
quoted characteristic of the database approach is
the reduction of redundancy, and the consequent
decrease in inconsistencies, processing time and

The Review of Accounting Information Systems

Volume 3, Number 3

storage requirements, along with the enhance-
ment of data integrity (Wilkinson and Cerullo,
1997, p. 201). While not denying the usefulness
of the skills learned in the Paquette approach,
this article will propose the calculation of ac-
counts receivable with data uniquely stored in
their tables by developing a sequence of queries
upon those tables.

Design of the Tables

In Microsoft Access, or any software
using the relational model, tables are the funda-

mental storage entities for all data. For the ac-
counts receivable application, five tables are
proposed. Their minimal configuration is illus-
trated in Figure 1.

The Customer Master table contains the
relatively permanent information about each
customer, the external agent in this resource-
event-agent model. Possible additional attributes
for this table would include city, state, zip, and
credit limit.

There are two tables necessary to de-

Figure 1
Customer Master
Customer ID Customer Name Customer Address
11 ABC Co. 123 First St.
12 DEF Co. 234 Second St.
Invoices
Invoice ID Customer ID Date Shipping Cost
1 11 8/15 $30.00
2 11 8/20 $45.00
3 12 8/21 $10.00
Invoice Details
Invoice ID Product ID Quantity Price per Unit
1 200 20 $2.00
1 300 30 $3.00
2 50 2 $3.00
2 100 5 $4.00
3 10 5 $3.00
3 399 4 $2.00
3 499 4 $5.00
Payments
Cash Receipt Number Customer ID Date Received
1 11 9/2
2 11 9/4
Payment Details
Cash Receipt Number Invoice ID Amount Applied to this Invoice
1 1 $150.00
2 1 $10.00
2 2 $6.00

The Review of Accounting Information Systems

Volume 3, Number 3

scribe the sales event and two for the payment
event. This is required to implement the many-
to-many maximum cardinalities in the model.
That is, a sale could relate to many inventory
items, and an inventory item could be repre-
sented on many invoices. Similarly, one pay-
ment could cover many invoices, and an invoice
could be paid in many installment payments.
Like the Customer Master table, these event ta-
bles could contain additional attributes, which
would vary with different enterprises. The In-
voice Details table would have a concatenated
primary key consisting of both the Invoice ID
and the Product ID, while the concatenated pri-
mary key for the Payment Details table would be
the Cash Receipt Number and the Invoice ID.

A series of one-to-many relationships
would be implemented in the database. The
Customer ID in the Customer Master table
would be related to its match in the Invoices ta-
ble and in the Payments table. The Invoice ID in
the Invoices table would be related to its match
in the Invoice Details table and in the Payment
Details table. Finally, the Cash Receipt Number
in the Payments table would be dragged and
dropped onto its match in the Payment Details
table.

To facilitate data entry, as well as data
display, forms could be created using the form-
with-subform approach. For example, payments
could be recorded in a form with the Payment
table fields at the top as the main form, and a
subform within the main form containing the
Payment Details records related to that cash re-
ceipt. This would add records to both tables at
once, with refer-ential integrity en-forced if

the Invoices and the Invoice Details tables.
Calculations With Queries

Once the tables are in place, queries can
be created, using query-by-example (QBE), to
perform all necessary calculations. The first
query would be Invoice Extension, which would
create a dynaset from the Invoice Details table,
with one row per invoice, showing the sum of
the price times quantity for all items ordered on
the invoice, as illustrated in Figure 2.

Figure 1
Invoice Extension

Invoice ID Extension
1 $130.00
2 $26.00
3 $43.00

In the QBE grid for this query, the first
column would be the Invoice ID from the In-
voice Details table, with “Group By” indicated
on the Total line of the grid. The second column
would be an expression, defined as follows:

Sum([Quantity]*[Price per Unit])

Next, an Invoice Total query could be
built, based on the Invoices table and the just-
created Invoice Extension query dynaset, related
to each other on Invoice ID. The results of this
query are shown in Figure 3.

The first three fields in this Invoice To-
tal query (Customer ID, Invoice ID, and Ship-

properly requested :

when the Figure 3

relationships were Invoice Total

established. In a

similar man-ner, Customer ID Invoice ID Shipping Cost Extension Total
the form-with- 11 1 $30.00 $130.00 $160.00
subform de-sign 11 2 $45.00 $26.00 $71.00
could be used to 12 3 $10.00 $43.00 $53.00
record sales into

50

The Review of Accounting Information Systems

Volume 3, Number 3

ping Cost) are selected from the Invoices table,
while the Extension attribute is selected from the
Invoice Extension query dynaset. The final
field, Total, is an expression built as follows:

Total: [Extension]+[Shipping Cost]

A query of total invoices by customer,
showing one line per customer, could easily be
created. Alternatively, a report could be used to
show totals by customer. Since this example
uses the report alternative, we will now direct
our attention to the payments made against these
invoices.

From the Payment Details table, a
query will summarize Payment Totals by In-
voice. The query view is shown in Figure 4.

Figure 4
Payment Totals by Invoice

The Invoice ID field is pulled from the
Payment Details table, with “Group By” on the
Total line of the QBE grid. The Amount Ap-
plied to this Invoice is likewise pulled, but Sum
is entered on the Total line for this column.

The final query is the Accounts Receiv-
able one. It computes the difference between the
amounts in the Invoice Total query and the Pay-
ment Totals by Invoice query and can be seen in

Figure 5.

The Invoice Total and the Payment To-
tals by Invoice queries are linked by Invoice ID.
However, the link within this query must be
changed from the default type 1 join into a type
2 join. This is accomplished by double-clicking
on the line connecting the two Invoice IDs. The
change is necessary because a type 1 join will
show only those rows where the joined fields in
both dynasets are equal. Thus, it would not
show the last invoice, for which there is no
matching payment. A type 2 join, on the other
hand, will show all the rows in the Invoice Total
dynaset, along with any matching payments.

The Still Due column is an expression
built with some care:

Still Due: [Total] - Nz([SumofAmount Applied
to this Invoice])

Invoice ID SumofAmount Applied to The Nz function is required to make

this Invoice sure that a zero is returned when a variant is

null. Without it, the Still Due amount for the

1 $160.00 last invoice, for which there is no payment,
2 $6.00

would be null instead of the correct value, the
full amount of the invoice.

Presenting Results in a Report

The project can be completed, with at-
tractive output, in a report. An example is
shown in Figure 6.

This report is based on the Accounts
Receivable query, along with the Customer
Master table for retrieving the customer names.
The report groups on Customer ID. In the Cus-

Figure 5
Accounts Receivable

Customer ID Invoice ID

Total Sum of Amount Applied to this Invoice Still Due
11 1 $160.00 $160.00 $0.00
11 2 $71.00 $6.00 $65.00
12 3 $53.00 $53.00

51

The Review of Accounting Information Systems

Volume 3, Number 3

Figure 6
Accounts Receivable Report

Customer Name Invoice ID Invoice Total ~Amount Applied Still Due
ABC Co.
1 $160.00 $160.00 $0.00
2 $71.00 $6.00 $65.00
ABC Co. Total $231.00 $166.00 $65.00
DEF Co.
3 $53.00 $53.00
DEF Co. Total $53.00 $53.00
Grand Total $284.00 $166.00 $118.00

tomer ID group footer, text boxes for computing
the three sums are created. Those same text
boxes can be copied and pasted into the report
footer to print the grand totals.

Summary

The calculation and presentation of ac-
counts receivable in an events-based relational
database system is neither straightforward nor
trivial. The solution proposed in this paper is
consistent with sound database design principles
of normalization and minimized redundancy. It
requires queries, queries of queries, and a re-
port. However, once these objects have been
created, the system will allow the one-time entry
and storage of raw business events which may
then be aggregated to satisfy the views desired
by various information customers.

References

1. Hollander, Anita S., Eric L. Denna, and
J. Owen Cherrington, Accounting, Infor-
mation Technology, and Business Solu-
tions, Richard D. Irwin, Chicago, Illinois,
1996.

2. McCarthy, William E., “The REA Ac-
counting Model: A Generalized Frame-
work for Accounting Systems in a Shared
Data Environment,” The Accounting Re-
view, Vol. 57, No. 3, pp. 554-577, 1982.

52

Paquette, Laurence R., “Database Up-
dates in Access,” The Review of Account-
ing Information Systems, Vol. 2, No. 4,
pp- 45-50, 1998.

Perry, James T. and Gary P. Schneider,
Building Accounting Systems Using Access
97, Third Edition, South-Western College
Publishing, Cincinnati, Ohio, 1999.
Romney, Marshall B., Paul J. Steinbart,
and Barry E. Cushing, Accounting Infor-
mation Systems, Seventh Edition,
Addison-Wesley, Reading, Massachusetts,
1997.

Wilkinson, Joseph W. and Michael J. Ce-
rullo, Accounting Information Systems:
Essential Concepts and Applications,
Third Edition, John Wiley & Sons, New
York, 1997.

