The Review of Accounting Information Systems

Volume 2, Number 2

Managing Information Systems
Construction

Peter Middleton, (E-mail: p.middleton@qub.ac.uk), The Queen’s University of Belfast

Abstract

This paper examines the efficiency and effectiveness of a prescriptive systems develop-
ment methodology in practice. The UK Government’s mandatory Structured Systems
Analysis and Design Method (SSADM) was examined to determine its value to software
projects. The evidence was collected from interviews with 17 project managers, discus-
sions with participants on 3 large SSADM projects and from observing 90 end users in
training. The conclusions are that prescriptive information systems methodologies are
unlikely to cope well with strategic uncertainty, user communication or staff develop-
ment. The recommendations are to focus more on soft organisational issues and to use

approaches tailored to each project.

Introduction
his research examines the use of pre-
I scriptive methodology as a way of im-
proving software quality. It does this by
evaluating how effective the UK Government’s
Structured Systems Analysis and Design Method
(SSADM) is in raising the performance of soft-
ware developers. The idea of defining a way to
develop software successfully and then training
people to follow it is an attractive one.

The arguments for a methodology are at
first sight persuasive and include: (1) Financial
and technical resources could be harnessed to
create the ‘best’ method possible; (2) It would
facilitate the mobility of labour and the formation
of project teams; (3) It would aid industrial col-
laboration by providing a common framework
for complex software projects; (4) Systems
written using a standard methodology could be
maintained by a wider range of suppliers; and (5)
A commonly used standard would increase the

Readers with comments or questions are encour-
aged to contact the authors via e-mail.

55

speed of software development because support
tools would become available.

To examine the validity of these argu-
ments the experience of using SSADM within the
UK will be analyzed.

The Structured System Analysis and De-
sign Method (SSADM) is important because it is
mandatory for UK central government software
development projects. Its sponsorship by the
Central Computer and Telecommunications
Agency (CCTA) and the National Computer
Centre (NCC), means that it strongly influences
the UK IT industry.

Since 1981 the UK software industry has
gone into rapid decline and it now has virtually
no international standing (Holway, 1992). It was
during this period that SSADM was introduced.
SSADM is claimed to be the most popular third
party development methodology within the UK,
holding 25% (Ashworth, 1992) or 41%
(Springett, 1993) of the market.

The Review of Accounting Information Systems

Volume 2. Number 2

The government is the largest purchaser
of software in the country, spending about £1
billion a year (Ashworth, 1992). However, the
House of Commons Public Accounts Committee
highlighted software as the major culprit in an
examination of project cost over-runs. The Na-
tional Audit Office has also produced reports
detailing the serious waste caused by the poor
management of government software projects
(National Audit Office 1987; 1989; 1990).

This research was undertaken to deter-
mine how SSADM has performed in practice by
interviewing users of SSADM.

SSADM in the context of other methodologies

According to Jones (1990) a methodology
is: “a body of knowledge and techniques.. meth-
odologies should be algorithmic, in the sense that
they furnish rules for achieving their desired re-
sult.” DeMarco & Lister (1987) would agree de-
fining a methodology as: “a proven method for
undertaking a repeated task.”

The above definition is very broad as the
more detailed analysis of methodologies provided
by Avgerou & Cornford (1993) makes clear.
For example, methodologies can have varying
degrees of prescription; they can be more or less
contingent on the context in which they are to be
used; they can be complete or only provide rules
for parts of the task and they can have an engi-
neering or a sociological bias.

There are many views on how to develop
information systems. Some of these perspectives
have been captured in particular methodologies,
for example: ad hoc (Jones, 1990), waterfall
(Royce, 1970), participative (Mumford & Weir,
1979), soft systems(Checkland, 1981), prototyp-
ing (Naumann & Jenkins, 1982), incremental
(Gilb, 1988), spiral (Boehm & et al., 1984), re-
use (Matsumoto & Ohno, 1989), formal
(Andrews & Ince, 1991), rapid application de-
velopment (Martin, 1991), object-oriented (Coad
& Yourdon, 1991) and software capability
(Humphrey, 1990).

56

SSADM would be classified as a heavily
prescriptive methodology, although some
streamlining is allowed. It takes a rational, engi-
neering view of the world. It is driven by analy-
sis of the data within a proposed information
system and it requires a ‘waterfall’ life cycle to
be followed.

Background

The UK government is not alone in trying
to use methodology to raise the effectiveness and
efficiency of software developers. Capers Jones
(1986) examined the impact of standards and
formal development methods in over 100 large
enterprises in the United States and Europe. He
concluded that people felt a certain comfort from
their existence but the evidence on their benefits
was ambiguous. Boehm (1981) provides compre-
hensive data which indicates that methodology is
far less important than the ability of the develop-
ers and the complexity of the project.

DeMarco (1982) summarizes his experi-
ence of methodology in the following terms:
‘The idea that a single methodology should gov-
ern even two different projects is highly suspect:
The differences between projects are much more
important than the similarities.” (p. 131)

DeMarco goes on to point out that the
need to tailor a methodology is always recog-
nized, but that the senior and lower levels of the
hierarchy interpret this differently. Data reported
by DeMarco and Lister (1987) indicates that
working conditions are critical for raising pro-
ductivity. They also observed that detailed pre-
scriptive methodologies reduce rather than in-
crease productivity. The reasons they identified
for this were: a morass of paperwork; a paucity
of methods; an absence of responsibility and a
general loss of motivation. (ibid. p.116)

SSADM is commonly perceived to be
‘prescriptive, burdensome and difficult to apply’
(Thomson, 1990). Other criticisms are that staff
do not really understand SSADM and are just
‘going through the motions’ (Crinnion, 1991) or
‘learn it by rote, then use it as an excuse not to

The Review of Accounting Information Systems

Volume 2, Number 2

think’ (Holloway, 1993). That the top down
structured approach of SSADM is too rigid and
does not reflect the way people work in practice
(Whitefield & Sutcliffe, 1992) (Truil, 1990).
That it attempts to substitute methodology for
management (Simpson, 1990) and it puts too
much emphasis on functionality, analysis and de-
sign at the expense of people and organisational
issues (Cockcroft, 1990).

On the positive side, Hares (1990, p.39)
asserts: ‘Failure to produce high quality deliver-
ables is due to poor application of the method,
not the method itself’”. Young, (1993) com-
ments: ‘I strongly believe that any method is
better than none and SSADM is certainly worth
using if the alternative is ad hoc software devel-
opment’.

The SSADM Version 3 manuals
(Longworth & Nicholls, 1986; 1986a), the hand-
book, (Longworth, Nicholls & Abbott, 1988)
and the SSADM Version 4 manuals (CCTA,
1990) offer no empirical data to underpin the
methodology. The official training materials
(AIMS Systems, 1990) from the creators of
SSADM v.4 also offer no supporting data or ref-
erences to explain the construction of SSADM.
The large number of books which have emerged
for the SSADM training market, (for example:
Cutts, 1991; Downs, Clare & Coe, 1992; Eva,
1990; Skidmore, Farmer & Mills, 1992) tend to
focus on presenting the methodology rather than
evaluating or criticising it.

Research methodology

The initial idea for collecting data on how
methodologies functioned in practice was to ap-
proach the Civil Service at a senior level and
carry out a project with their formal cooperation.
As a condition of cooperation it was agreed that
any papers could be revised by the Civil Service
before release. After several months work an
initial paper was submitted for review. The re-
turned, revised document was so bland as to be
of little value. This approach to collecting raw
data had therefore to be abandoned.

57

A more informal method was therefore
adopted for this research study which collected
information from 3 different types of source.

Firstly, to establish how SSADM per-
forms in practice 3 multi-million pound SSADM
projects were followed over a 3 year period.
They were all public sector although outside
central government - housing, education and lo-
cal government. The progress of the projects
was followed by meetings with users, developers
and sponsors. These were carried out at 3
monthly intervals using semi-structured inter-
views. The people were approached informally
and assured of complete confidentiality.

Secondly, the author was awarded a con-
tract to provide SSADM training to 90 end users,
to enable them to understand their SSADM
documents. These training courses were in
seminar form in groups of 10 people each lasting
for 2 days. The course training materials were
live SSADM documents produced by the end us-
ers’ project teams. The comments of the partici-
pants were written down as were any observa-
tions about how they coped with the SSADM
material.

Thirdly, to provide a broader sample, 17
semi-structured, 2 hour interviews with other
project managers were carried out. These were
from 12 public sector and 5 private sector or-
ganisations. The public sector organisations
were the Information Systems Units of a range of
government departments. They all used SSADM
except for their small projects. Of the private
sector organisations only one of them used
SSADM and then only if requested by a public
sector client.

The reason for including non SSADM
projects in this sample was to try to establish
what difference SSADM was making to the
complete software development process. The
private sector representatives were the software
development organisation of a major multi na-
tional company, two systems software companies
that export their products world wide and two
national bespoke software developers. These last

The Review of Accounting Information Systems

Volume 2, Number 2

two companies were accredited with the ISO9000
quality standard.

The questions asked in the 17 interviews
included: What was the methodology used for
analysis and design?, How much was the meth-
odology tailored?, Life cycle used?, What was
the background of the project leader?, What was
the role of the user?, Which methodology was
used for project management?, How much was
this methodology tailored?, How does this proj-
ect compare to others?, and How is service de-
livery measured?

All respondents were project managers
and came from an IT background. In all cases
SSADM was reported to be modified. Respon-
dents were asked to give a response on a 5 point
scale if appropriate and then encouraged to talk
as they wished about the topics raised.

This approach to collecting empirical
data is not perfect. It is open to interviewer bias
distorting the answers given by respondents.

The people interviewed are not chosen at ran-
dom; they will tend to self select. There is a
limit to how much hard data can be obtained, for
example, respondents sometimes did not know
the budget for the system or the timetable. The
main justification for this more informal ap-
proach is because it was seen as the only way to
produce reasonably comprehensive data.

Key Findings
Modifying SSADM

SSADM sees the software development
process as a cascade flowing from a clear strate-
gic direction and firm requirements as illustrated
on page 59 (CCTA, 1990, F-OVE-6).

This investigation found that in the cen-
tral and local government sites visited there were
roughly 100 small PC based projects for one
large mainframe based project. For these small
projects SSADM was either disregarded or tai-
lored beyond recognition. The approaches used

Summary of the 17 Interviews

Public/ Months Computer Project Proj.
Ref. Private Duration Language IT staff Method Mgt.
1 Private 30 COBOL 12 MAP none
2 Private 25 COBOL 5 Yourdon Prince
3 Private 22 Client 18 SSADM4 Prince
4 Private 10 C 9 Own Task
5 Private Variety of small projects
6 Public 30 Oracle 10 SSADM3 Prince
7 Public 7 Oracle 7 SSADM3 Prince
8 Public 12 Oracle 5 SSADM4 Prince
9 Public 10 Oracle 6 SSADM3 Prompt
10 Public 24 Quickbuild 5 SSADM3 Prompt
11 Public 4 Network 5 ad hoc Prince
12 Public 24 Oracle 3 SSADM3 Prince
13 Public 28 Proprietary 10 Own Prince
14 Public 24 Dataflex 10 SSADM4 Prince
15 Public 27 Dbase 2 ad hoc none
16 Public Variety of small projects
17 Public 12 Package 3 SSADM4 Prince

58

The Review of Accounting Information Systems

Volume 2. Number 2

were either ad hoc, prototyping, or incremental
development. This goes far beyond the
‘streamlining’ recommended for using SSADM.

STRATEGIC PLANNING

I
FEASIBILITY STUDY

REQUIREMENTS ANALYSIS

|
REQUIREMENTS SPECIFICATION

|
LOGICAL SYSTEM SPECIFICATION

PHYSICAL DESIGN

|
CONSTRUCT AND TEST

Even when the core ‘waterfall’ life cycle
was retained considerable changes to SSADM
were being made. There were no reports of
‘pure’ SSADM being used and all respondents
stated that significant modifications to the meth-
odology were made. Samples of quotes were:

“Entity Life History diagrams not done - no time
- wouldn’t add that much value”

“Used prototyping with no particular process.
Couldn’t fit SSADM to Oracle easily.”

“Because a modified package solution - no Entity
Life History diagrams, no Logical Design, no
analysis done, no technical options needed.”

The need by all respondents to modify
SSADM in most cases significantly would indi-
cate that its prescriptive approach is found hard
to apply.

Iteration

SSADM recommends that the work for
each of SSADM’s five modules is completed in
sequence. It should be noted that the applica-
tions projects are essentially linear, albeit with
some opportunities for integrated tasks. (CCTA,
1990, F-OVE-6). The resulting input to the next
module must contain all the required informa-

59

tion. (CCTA, 1990, F-OVE-11).

In practice this linear approach was not
happening, for the following reasons. Firstly, in
every case there was a preferred computer lan-
guage - either because of their existing skills or
due to an organisational standard. Secondly, the
needs of the lengthy budgeting, and procurement
procedures required decisions to be made on
hardware early in the process. Often as will be
discussed in the next section the ‘upstream’ work
could not be compieted.

Strategy

SSADM states that: ‘It is assumed that
business planning, IS strategy and tactical plan-
ning, will have been carried out before an
SSADM project is initiated. Whether formally
or informally, the types of analysis implied by
these tasks; must be undertaken before an
SSADM project can be initiated.” (CCTA, 1990,
F-OVE-6)

The interviews showed that this was
rarely the case.

“When a change in strategy - users don’t know
how to interpret - can’t see what to do.”

“Often strategy not defined; yet have to act.”

Developers mentioned that strategies
were often contradictory and vague at key points
which were vital for implementation. The
strategies were also liable to confuse the line
managers who were not really sure what they
meant. They were also non existent on occasions
when action was unavoidable. There were sev-
eral mentions of ‘planners blight’, when action
was halted while the strategy was completed,
which was disruptive. Finally, in four cases,
there were fundamental changes of strategy in
the middle of projects due to changes in the sen-
ior management.

Requirements Analysis

SSADM advocates the use of a priori-

The Review of Accounting Information Systems

Volume 2, Number 2

tized list of requirements. Requirements can be
added to and deleted from this list as the project
progresses. Requirements are to be quantifiable
and measurable, for example, Step 370 (CCTA,
1990, F-RD-7) requires: “........ ensure that all
requirements, particularly non-functional re-
quirements, have been identified, are described
correctly, and are fully detailed.’

This need to start with firm requirements
was in every case a stumbling block. The inter-
views found:

“Users sign off documents - this doesn’t mean
they understand or agree.”

“Users often don’t understand their own sys-
tems.”

“Internal politics override administrative and
technical sense.”

In summary the reasons this part of the
methodology caused so many problems are the
following: (1) The users did not know what they
wanted; (2) The users did not know the possibili-
ties of the technology; (3) Users’ perceptions
changed as the system was being developed; (4)
The developers did not understand the intricacies
of the users’ work; and (5) There were constant
changes in the external environment that were
not anticipated.

This need in SSADM for developers to
establish firm requirements was for all practical
purposes impossible to achieve. As a conse-
quence of this the following inevitably happened
with SSADM projects - either the users were
obliged to take the system they asked for even
though it did not meet their requirements or the
projects degenerated into a ‘Code and test’ cycle
to try to create a useful product. This caused
particular problems when there was a legal con-
tract with an outside developer, based on the
firm set of requirements. The requirements, al-
though firm, were of poor quality and frequent
alterations were needed.

60

Approach to users

In SSADM users are asked their re-
quirements which are then catalogued and pri-
oritized. This process is described in (CCTA,
1990, F-CON-4):

‘Users needs are given high priority in
SSADM and user involvement is defined and
highly visible. They have a major involvement
in the expression of their business needs, in the
decision-making process at all levels, and
throughout all phases of the method.’

This approach tended to lead to commu-
nication being ritualized with long formal meet-
ings and documents signed off unread. The lack
of partial deliveries of software, the long time
scales and the large quantities of documentation
sapped morale and were the reasons given for the
low commitment to the projects.

The better projects, defined as delivering
working systems within reasonable cost and time
parameters, did much more than ask or involve
the users. To establish the depth of communica-
tion necessary the successful projects ensured
that developers and users shared the same office
space, went on joint site visits and that the devel-
opers spent time doing the users’ job. They also
went to talk to the users’ customers to learn their
perspectives. Joint informal meetings with the
project sponsors helped the team to gain a depth
of insight and consensus into what their objec-
tives were.

It would appear that, in practice, the need
was to develop trust and a shared vision of what
the project was trying to achieve: users are part
of the system and therefore it is necessary that
their capabilities are explicitly grown with the
system. The SSADM recommendation of asking
and involving users was observed to be too su-
perficial an approach. The perceived need was
to foster commitment, develop the users’ skills
and to consciously handle the politics of the proj-
ect. The evidence from these projects is that
SSADM tends to limit the contribution of the
user to ‘involvement’ and ‘expression’ rather

The Review of Accounting Information Systems

Volume 2. Number 2

than the needed participation and commitment.
The use of diagrams

SSADM states that: ‘SSADM’s graphical
notations can be readily understood by users, and
greatly contribute to effective communication
between them and the analysis team.” (CCTA,
1990, F-CON-4)

Diagrams and conventions for their use
are central to SSADM, but practical evidence
shows that they may not contribute as expected
for the following reasons that emerged from the
observations and the interviews: (1) End users
easily confuse the different diagramming tech-
niques and are rarely clear if they are describing
an existing system or designing a new one. Us-
ers who are asked to communicate through an
unfamiliar method with apparently arcane con-
ventions, often just retreat from the project and
virtually all communication is lost; and (2) The
lack of effective communication is confirmed by
routinely finding several errors per page on dia-
grams which have been quality assured. This
high level of errors for these diagramming tech-
niques has also been reported by Gilb (1988) and
Parkinson (1991).

The most successful projects, in terms of
practical results delivered, focused on creating a
supportive atmosphere in which communication
could flourish. There seems to be no reason why
users cannot scribble and express themselves as
they wish. These ideas can then by refined as
necessary. The important point is to ensure that
the users enjoy the process and may become cu-
rious about how to develop their system skills.
Boddie (1987) observes that formal communica-
tion is often ineffective, compared to using
‘social’ mechanisms of leadership and peer group
example.

SSADM focuses the developer on the
technical drawing techniques, not the soft skills
of facilitating the human process of communica-
tion. By encouraging this orientation, real com-
munication is lost which is partly why SSADM
diagrams tend to be inaccurate in practice.

61

SSADM with large systems

These are systems with over 3 years de-
velopment time and budgets over £1 million.
Following 3 of these projects for 3 years showed
that they all failed to deliver the system to users
on time and to meet users needs. The large sys-
tems adhered to SSADM very closely. The rea-
sons for this were: (1) Because of the amount of
money involved staff at all levels become very
cautious about deviating from the recommended
way; (2) Using SSADM would provide political
protection should the project run into trouble; (3)
Large projects are of necessity more formalized
and it was easier to agree to use the complete
method; and (4) In all 3 cases this was the big-
gest project the staff had ever attempted and they
were willing to trust SSADM even if its recom-
mendations did not seem sensible.

In all 3 projects technical problems
emerged very late on in the development proc-
ess. For example on one project the database re-
sponse times were hopelessly slow. This was in
spite of the extensive use of experienced SSADM
consultants. This was only solved by an expen-
sive upgrade of the hardware. In another a seri-
ous design flaw was not picked up until just be-
fore implementation. Because the problems were
discovered late on in the project they were costly
and disruptive.

All 3 projects experienced severe prob-
lems in their relationships with users. The users
for two of the large systems who were ‘involved’
with their SSADM project were also trying to
undermine the project, by actively lobbying to
obtain their own separate system. After 2 years
the SSADM projects had produced nothing tan-
gible and they had lost confidence in the process.
In the third the users had to wait 4 years for any
tangible results that they could work with. This
had damaged their morale and that of the devel-
opers.

Staff turnover and capability

SSADM is intended to compensate for
staff turnover and make inexperienced staff more

The Review of Accounting Information Systems

Volume 2, Number 2

productive (Longworth, 1989; 1992).

In this sample of projects examined, staff
turnover within the developers was not observed
to be the reason that the projects were running
into problems. A main reason was that the de-
velopers had generally only two or three years of
project experience and junior staff often less than
that. The development of their skills did not
seem to have been very methodical. Handling
I.T. projects with or without SSADM takes a lot
of skill which the inexperienced people did not
have. The two most successful projects both had
project managers with over 10 years good expe-
rience.

Learning SSADM

The introduction to the 4 volumes of the
SSADM manual which weigh 10 pounds states:

‘This document has been produced as a
Reference manual for analysts trained in
SSADM. It does not, by itself, constitute an
adequate training guide and is not therefore suit-
able for use by trainees.” (CCTA, 1990, 1-INT-
vii)

To understand SSADM v.4 it is neces-
sary to attend an authorized three week training
course and work through three files (AIMS Sys-
tems, 1990). The training, although expertly
carried out, lacked conviction because there was
no empirical validation of the methodology.
There were no references showing SSADM'’s
development or comparisons with other ap-
proaches. There was no data on developer pro-
ductivity, product quality, timeliness of delivery
or user satisfaction. SSADM is such a large and
sophisticated methodology that students tended to
be overwhelmed with the detail and complexity.
As Skidmore and Wroe (1990) observe, SSADM
models often become more elaborate than the
system they are attempting to explain.

Discussion

SSADM is a data driven, ‘waterfall’
methodology which takes a rational and technical

62

view of the world. It is prescriptive although
streamlining is allowable. But the results of this
present study raise questions about key parts of
the methodology.

The ‘waterfall’ approach?

The drawbacks of this ‘waterfall’ ap-
proach have been well documented by Jones
(1990), Parnas & Clements (1986), Spence &
Carey (1991) and others. The difficulties con-
firmed by this research were those of managing
ever shifting requirements, poor relationships
with users and the emergence of serious prob-
lems late in a project. This indicates that the
waterfall method may not be the best way to de-
velop the majority of public sector IS projects.

A recommended and efficient way?

There are many different models of the
software process, for example: ad hoc, waterfall,
participative, soft systems, prototyping, incre-
mental, spiral, reuse, formal, rapid application
development, object-oriented and software capa-
bility. All of these approaches have different
cost profiles, strengths and weaknesses. Each
model has many variants and to some extent they
can be combined to produce hybrid approaches.

Given the wide range in the size, com-
plexity, risk, context and urgency of the IS proj-
ects in the public sector, it would seem sensible
for the developers and users to agree the opti-
mum approach for their particular needs. It is
suggested that, rather than streamlining a pre-
scriptive approach, a specific development model
for each project should be created.

Strategic Stability?

The assumption of a stable and coherent
strategic context within which an SSADM proj-
ect would take place was shown to be invalid in
practice. While it may be possible to improve
the strategies within organizations, it seems un-
realistic to assume a clear strategy before starting
an IS project. Therefore a software development
model which is more comfortable with strategic

The Review of Accounting Information Systems

Volume 2, Number 2

ambiguity and uncertainty is required. The mod-
els most at home in this environment would be:
Rapid Applications Development (Martin, 1991)
and Incremental Development (Gilb, 1988;
Humphrey, 1990).

Firm requirements?

This research shows that good quality,
firm, detailed requirements are very hard to ob-
tain. This has been observed by others, for ex-
ample Humphrey (1990) states;

‘For large-scale programs, the task of
stating a complete requirement is not just diffi-
cult; it is practically impossible. Unless the job
has previously been done and only modest
changes are needed, it is best to assume the re-
quirements are wrong’ (p.25)

As this seems to the general case then the
best software development approach would seem
to be the incremental one. This entails defining a
small core of major requirements which are to be
delivered within a few months, rather than years.
The system is then grown rather than built.

Project size?

Examining the range of projects being
worked on showed that there were roughly 100
small PC projects to 1 large mainframe project.
SSADM which has its roots in MODUS from the
mainframes of the early 1970s (Hares, 1990), did
not adapt easily to these micro computer based
projects. It would therefore seem sensible to re-
vise SSADM to focus on the majority of projects
which are small. This would help the junior staff
learn good practice early on. Tailoring SSADM
takes considerable skill (Ince, 1991) which these
staff are unlikely to possess.

There seemed no reason why the larger
projects could not each be broken down into sev-
eral smaller ones and handled with an incre-
mental development process. The data from
Putnam & Meyers (1992) shows that larger proj-
ects require exponentially more effort than
smaller ones. Many of the objectives of SSADM

63

could be achieved by restricting developers and
users to small projects until their skills develop.
This indicates that SSADM should have small
projects as its primary rather than secondary tar-
get: an indication that can be utilized at a later
stage of this investigation.

One track approach?

SSADM implies a one track approach
and does not encourage the creation of alterna-
tive scenarios for the project as it develops. In
contrast experienced analysts were always plan-
ning what action to take if problems arose with
staff turnover, hardware performance, procure-
ment delays and so on. The successful analyst is
careful to focus his attention on high risk areas,

not on the whole project as indicated by
SSADM,

Staff development?

Cheap literature and authorized training
is claimed to be one of the main advantages of
SSADM as an open methodology. The problem
is that if the standard approach is flawed, as this
evidence indicates, then the books, training and
consultancy are obliged to propagate the errors.

Recommendations

This present work confirms the findings
of Boehm (1981), Jones (1986) and DeMarco &
Lister (1987) that people rather than methodol-
ogy are the key factors in raising productivity.
The recommendations are therefore concerned
with ways to develop staff.

Project register: for funds to be released
for a software project, large quantities of docu-
mentation have to be created and submitted. A
few parameters of budget, size, time scales
should be held centrally and updated as the proj-
ect progresses. This would quickly provide a
profile of actual performance and a basis for
benchmarking.

Process Maturity: assessment of the soft-
ware development capability of the various parts

The Review of Accounting Information Systems

Volume 2, Number 2

of the public sector, would provide a firmer base
for training and development plans. If this sam-
ple is typical, virtually all of the public sector
would rank at the bottom of the Software Engi-

neering Institute’s Software Process Maturity
model.

User communication: The emphasis
needs to be shifted from diagramming techniques
and CASE tools to the sociology of projects.
The evidence of the poor relationships with us-
ers, indicates that much larger and cheaper gains
could be made from tackling the ‘soft’ organisa-
tional rather than the ‘hard’ technical issues
within IS development.

Tailored life cycles: for each project the
proposed approach: Evolutionary, Participative,
Soft Systems or others as appropriate, would be
explicitly stated and related to the context and
risk factors of the project.

Project managers: The need for a ‘cadre’
of well trained and experienced project managers
was mentioned by several practitioners. The use
of a fast track, career development scheme to
improve the skills of staff is required.

Conclusion

SSADM has done a service in promoting
an ordered approach to software development
and spreading the use of valuable techniques.
SSADM offers political protection to civil ser-
vants should projects go wrong. It also helps to
give the appearance of administrative control
over the complex process of software develop-
ment. It is therefore useful to the public sector.

The evidence presented in this study
would confirm the observations of others that
SSADM is flawed. (Thomson, 1990; Crinnion,
1991; Holloway, 1993; Trull, 1990; Simpson,
1990; Cockcroft, 1990).

SSADM has three main weaknesses.

Firstly, it is based on a waterfall model of
software development which is appropriate for

64

only a minority of projects. This finding is con-
firmed by data from Verner & Cerpa (1997) that
shows that only 27% of organisations use the
waterfall approach for all projects.

Secondly, as Avgerou & Cornford (1993)
point out there are limitations in trying to stan-
dardize professional practices for activities which
are so little understood. The fact that SSADM
has no empirical base and has not been system-
atically monitored in use by the CCTA would in-
dicate that it is unlikely to be an effective way to
direct the efforts of software developers.

Thirdly, the high level of prescription
which accounts for much of the size and com-
plexity of the methodology is not useful for
practitioners. This is because the prescriptions
are based on the assumption that the waterfall life
cycle is appropriate for many projects when
clearly it is not. Also the techniques prescribed
in such detail, without any empirical justification,
are not found to produce benefits and are there-
fore ignored.

The idea of a ‘best’ method is misleading
because of the diverse range of projects and de-
velopers. The generic lesson from this research
is that an organisation is probably unwise to use
a heavily prescriptive methodology to improve
its software development performance. If an or-
ganisation feels that methodology is the appro-
priate route it should ensure there is some em-
pirical data to underpin the proposed approach
and that there is some objective monitoring of the
methodology when in use.

Implications For Future Research

Software developers work in groups on
intellectually complex tasks. Current attempts at
knowledge collection and sharing are still crude
using such mechanisms as metrics or methodol-
ogy. The ideal future research would be with an
organisation which would explicitly experiment
with different approaches to managing software
projects. A diversity of approaches would assist
organisational learning and would probably re-
duce the proportion of project failures for the

The Review of Accounting Information Systems

Volume 2. Number 2

entire organisation.)

References

1.

10.

11.

12.

13.

14.

AIMS Systems. SSADM Version 4 Train-
ing Manuals (Vols. 1, 2 & 3) . Aims Sys-
tems, England. 1990.

Andrews, D., & Ince, D. Practical For-
mal Methods with VDM. McGraw Hill,
London, 1991.

Ashworth, A. The Current Position of
SSADM. Paper presented at the NCC
Software Seminar, ICL Belfast, 1992
Avgerou, C., & Cornford, T. Developing
Information Systems: Methodologies,
Techniques and Tools. Macmillan, Lon-
don, 1993.

Boddie, J. Crunch Mode. Building Effec-
tive Systems on a Tight Schedule. Yourdon
Press, Prentice-Hall, Englewood Cliffs,
NJ, 1987.

Boehm, B. Sofiware Engineering Eco-
nomics. Prentice Hall, Englewood Cliffs,
NJ, 1981.

Boehm, B. W., & et al. "A Software De-
velopment Environment for Improving
Productivity." Computer, 17, 6, 30-42,
1984.

CCTA. SSADM Version 4 Reference
manuals (Vols. 1, 2, 3 & 4) . NCC Black-
well, Oxford. 1990.

Checkland, P. Soft Systems Methodology.
Wiley, Chichester, 1981.

Coad, P., & Yourdon, E. Object-Oriented
Analysis. Prentice-Hall, Englewood Cliffs,
NJ, 1991.

Cockcroft, M. Structured Methods - not
seeing the wood for the trees? Paper pre-
sented at the Southcourt conference Mak-
ing Structured Methods Work, London,
1990, April.

Crinnion, J. Evolutionary Systems Devel-
opment. Pitman, London, 1991.

Cutts, G. SSADM. (2 ed.). Blackwell Sci-
entific Publications, Oxford, 1991.
DeMarco, T. Controlling Software Proj-
ects : Management Measurement and Es-
timation. Prentice-Hall, Englewood Cliffs,
1982.

65

15.

16.

17.

18.

19.

20.

21.

22.

23,

24.

25.

26.

217.

28.

29.

30.

31.

DeMarco, T., & Lister, T. Peopleware:
Productive Projects and Teams. Prentice-
Hall, Englewood Cliffs, Dorset House,
New York, 1987.

Downs, E., Clare, P., & Coe, 1. SSADM :
Application and Context. (2 ed.). Prentice
Hall, Hemel, Hempstead, 1992.

Eva, M. SSADM: A Practical Approach.
McGraw Hill, Maidenhead, 1990.

Gilb, T. Principles of Software Engineer-
ing Management. Addison-Wesley, Wok-
ingham, United Kingdom, 1988.

Hares, J. S. SSADM for the Advanced
Practitioner. John Wiley & Sons, Chich-
ester, 1990.

Holloway, S. "The Method and the Mad-
ness." Government Computing, 7, 2, 10,
1993.

Holway, R. A Review of the Financial
Performance of United Kingdom Comput-
ing Services Companies, The Holway Re-
port . Richard Holway Ltd., Farnham,
Surrey. 1992.

Humphrey, W. S. Managing the Software
Process. Addison-Wesley, Reading, MA,
1990.

Ince, D. "The Making of a Modern Meth-
odology." Informatics, 1991.

Jones, G. W. Software Engineering. John
Wiley & Sons, New York, 1990.

Jones, T. C. Programming Productivity.
McGraw-Hill, New York, 1986.
Longworth, G. Getting the System you
want; a User's Guide to SSADM. NCC
Publications, Manchester, 1989.
Longworth, G. Introducing SSADM
(Version 4). NCC Blackwell, Manchester,
1992.

Longworth, G., & Nicholls, D. SSADM
Manual (Version 3). NCC Publications,
Manchester, 1986.

Longworth, G., & Nicholls, D. SSADM
Manual (Version 3), Vol. 2 Techniques
and Documentation. NCC Publications,
Manchester, 1986a.

Longworth, G., Nicholls, D., & Abbott, J.
SSADM Developer's Handbook. NCC
Publications, Manchester, 1988.

Martin, J. Rapid Application Development.

The Review of Accounting Information Systems

Volume 2, Number 2

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Macmillan, New York, NY, 1991.
Matsumoto, Y., & Ohno, Y. Japanese
Perspectives in Software Engineering. Ad-
dison-Wesley, Singapore, 1989.

Mumford, E., & Weir, M. Computer Sys-
tems in Work Design - The ETHICS
Method. Associated Business Press, Lon-
don, 1979.

National Audit Office. Inland Revenue :
Control of Major Development in the use
of Information Technology. HMSO, Lon-
don. 1987.

National Audit Office. Department of So-
cial Security: Operational Strategy
HMSO, Session 1988-89, HC111, Lon-
don. 1989.

National Audit Office. Managing Com-
puter Projects in the National Health
Service . HMSO, London. 1990.
Naumann, J. D., & Jenkins, A. M.
"Prototyping: The New Paradigm for
Systems Development." MIS Quarterly,
September 1982.

Parkinson, J. Making CASE Work. Black-
well, Oxford, United Kingdom, 1991.
Parnas, D. L., & Clements, P. C. "A Ra-
tional Design Process : How and Why to
Fake It." IEEE Transactions on Software
Engineering, 12, 2, 251-257, 1986.
Putnam, L., H, & Meyers, W. Measures
for Excellence : Reliable Software on Time
and on Budget. Yourdon Press, Engle-
wood Cliffs, NY, 1992.

Royce, W. W. Managing the Development
of Large Software Systems: Concepts and
Techniques. Paper presented at the
WESCON, 1970

Simpson, 1. quoted in Black, G. ibid.
1990.

Skidmore, S., Farmer, R., & Mills, G.
SSADM Version 4 Models and Methods.
NCC, Manchester, 1992.

Skidmore, S., & Wroe, B. Introducing
Systems Design. NCC Blackwell, Man-
chester, 1990.

Spence, I. T. A., & Carey, B. N.
"Customers do not want Frozen Specifica-
tions." Software Engineering Journal, 6,
6, 175-180, 1991.

66

46.

47.

48.

49.

50.

51.

Springett, P. "The Method and the Mad-
ness." Government Computing, 7, 6, 10,
1993.

Thomson, I. "SSADM: The Last Word."
Government Computing, 4, 5, 28-29,
1990.

Trull, H. quoted in Black, G. Promises to
be Fulfilled. Financial Times, pp. 7, 1990,
October 19.

Verner, J. M., & Cerpa, N. "Prototyping:
Does Your View of its Advantages De-
pend on Your Job." Journal of Systems
Software, 36, 1, 3-16, 1997.

Whitefield, A., & Sutcliffe, A. "Case
Study in Human Factors Evaluation." In-
formation and Software Technology, 34, 7,
443-453, 1992,

Young, G. "quoted in Springett, P. ibid."
1993.

