Review of Accounting Information Systems

Yolume 1, Number 4

Audit Considerations
of Object-Oriented
Information Systems

Donald Golden, (golden@cis.csuohio.edu), Cleveland State University
Linda Garceau, (garceau@popmail.csuohio.edu), Cleveland State University

Abstract

The object-oriented approach has changed the way in which designer/developers build
systems. With this approach data and function are linked in a common entity called an
object. These objects are reusable and can inherit characteristics from antecedent ob-
Jects. Such characteristics enable the designer/developer to build a "new" system by
reusing objects drawn from a common object library. The characteristics of reusability
and inheritance require the designer/developer to "trust" an object. It is the responsi-
bility of the auditor to determine if such "trust" is warranted.

Introduction

properties of the object-oriented ap-

proach to developing information sys-
tems that have resulted in its rapid acceptance by
the systems development community. These
properties enable developers to focus upon the
new problem, building upon prior system solu-
tions, rather reconstructing the old. Yet, they
also present a significant control problem for the
systems auditor. Reusability means that the
contents of previously constructed objects are,
by intent, not visible in the current system. In-
heritance has the effect that a class may be a
many-times descendent of other classes, all of
whose data and procedural code is available for
use by the current class, but again, not readily
visible. Obviously, the integrity and accuracy of
processing become primary concerns for the
systems auditor with this new approach.

R eusability and inheritance are among the

Readers with comments or questions are encour-
aged to contact the authors via e-mail.

The Object-Oriented Approach

In the late 1960’s and early 1970’s, Ste-
vens, Constantine, Myers, Yourdon, and others
[1, 2] proposed the systems analysis and design
technique known as structured analysis and de-
sign. Widely accepted, this approach empha-
sized the hierarchical organization of the system
and the functions that were required to solve
problems. Yet, other system professionals criti-
cized this approach’s failure to place adequate
emphasis upon data. Data structures that are
used in a problem solution are only loosely cou-
pled with the procedures that act upon them.
Over time, it became obvious that the role of
data in the development process was much more
important than was first realized. In the mid-
1980’s, an alternative method which linked data
and function together began to attract more and
more attention. This approach was called
“object-oriented”.

Review of Accounting Information Systems

Volume 1, Number 4

The object-oriented approach, unlike the
structured approach, combines data and function
in a single entity called an object. Formally de-
fined, an object is an individual, identifiable
item, unit, or entity either real or abstract, with a
well-defined role in the problem domain. Ob-
jects can represent tangible things such as,
houses, cats or accounts; roles played by an in-
dividual, such as father, teacher, or customer;
incidents, such as performances, events or
games; interactions or relations between objects,
such as classes or purchases; and specifications
that have the quality of a standard or definition,
such as car model or policy type.

In the object-oriented approach, objects
are viewed as “black boxes.” They encapsulate
both data and function, with their internal work-
ings hidden from their users. Common to every
object is a state and behavior.

An object’s state is determined by the
static properties or attributes that are unique to
that -object. As the values of these attributes
change, so does the object’s state. For example,
in an object known as account such attributes
might include account number, name, address,
and balance; while in an object known as game,
they may be date, teams competing, and score.
With the object-oriented approach, the state of an
object usually is private, not being visible to
other objects. This denial of access to the inter-
nals of an object is known as information hiding,
and it has the advantage that the data can only be
manipulated in ways permitted by the object.

The behavior of an object is the set of
operations or responsibilities that the object must
fulfill either for itself or for other objects. Thus,
an object may act independently or be called
upon by other objects to act for them. When
these actions are performed by the object, they
will change the state of the object. For example,
an account object may be called upon by a pur-
chase object to alter the balance of the account,
or a student object may recalculate GPA when
called upon by a grade object.

Once the object has performed the action, the
state of the object, which was altered by the ac-
tion, remains unchanged until the object is
called upon again. Like the states of the object,
some of the responsibilities or actions of the ob-
ject are also hidden. Thus, they are known only
to the object. Those actions or responsibilities
that are visible and known outside of the object
form the interface of the object, defining how it
will act and react with other objects in the prob-
lem domain. Theoretically, the integrity of an
object can not be violated, since it can only be-
have and interact with other objects in a well-
defined ways.

Implied in this discussion of state and
behavior is the concept of collaboration. Be-
cause objects can not always carry out their re-
sponsibilities independently, they must rely upon
other objects for assistance. Such help is called
collaboration, and the objects relying upon one
another, collaborators. For example, an account
object may collaborate with a deposit object to
calculate a new account balance, and a student
object may rely upon a grade object to recom-
pute a student’s overall GPA. Through collabo-
rations, objects work together to achieve the
overall goals of the system.

A final important component of the ob-
ject-oriented approach is class. While collabo-
ration indicates how objects work together ex-
plicitly to perform a task, class identifies the im-
plicit relationship of objects. Every object is a
member of a class. Such membership identifies
the essential attributes and behaviors of objects
that are shared by every member of the class.
Another way of looking at the class/object rela-
tionship is to say that a class is a model, or tem-
plate, for creating an object, and every object is
an instance of a class.

For example, in a sales system there is a
class called “customer.” If there are several ba-
sic types of customers, the customer class may
have descendent classes such as “product cus-
tomer” and “service customer”. Attributes
common to all types of customers, such as ac-

Review of Accounting Information Systems

Volume 1, Number 4

count number, name, street address, and bal-
ance; and common behaviors, such as “make
sale” and “collect moneys,” are defined in the
class customer, and are present not only in cus-
tomer but in its descendent classes (product cus-
tomer and service customer), as well. We say
that product customer and service customer in-
herit the attributes of their parent class, cus-
tomer. Only attributes and behaviors that are
unique to a descendent are defined at the descen-
dent level. Such unique attributes might be
“warranty terms” for the product customer class
or “service tax” for the service customer class;
unique behaviors might include “identify com-
mon carrier” in the product customer class or
“identify service personnel” in the service cus-
tomer class.

The relationship between classes and
objects is analogous to the relationship between
data types and variables in older programming
languages. You can have variables of type
“integer”, and you can define variables of this
type called Account Number or Num-
ber_of Customers. Similarly, you can have a
class called ServiceCustomer, and define objects
of class ServiceCustomer called New_Customer
or Current_Customer.

The Power of Objects

The object-oriented approach derives its
power from several factors. First, the fact that
objects model components in the real-world sys-
tem makes it relatively easy to reuse the objects
when new programs are written for a system.
Indeed, if the classes that describe a system are
well designed, building new programs from ob-
jects of these classes tends to be much easier
than using older techniques. Second, the ability
to create descendent classes that inherit data and
procedural characteristics from their parents
makes it easier to adapt existing classes to meet
new conditions. The ability to reuse objects
permits the system developer to “write it once,”
and then replicate the objects in all projects re-
quiring identical functionality. Like a building
block, a good object is designed and written us-

ing techniques that enhance its purpose, strength,
and form. Subsequent developers are not con-
cerned with how an object performs its function,
but rather what the function is. By combining
these “black box-like” objects, system devel-
oper can reduce the costs of building the system
and minimize the time required by the process,
while ensuring the delivery of a relatively so-
phisticated product .

Building an Object-Oriented System

Developing an object-oriented system is
much like building a house. An architect designs
the house assuming that certain standard compo-
nents will be used. For example, vertical wall
supports are 2x4 inch boards and the separation
between them is 16 inches. Doors and windows
are selected from standard sizes and shapes.
Bricks or concrete blocks have standard sizes
and structural properties. When a mason selects
concrete blocks from a warehouse, he knows the
properties of these blocks because they were all
made to match a particular specification. All
building blocks of a particular type are the same.
If the worker must modify a block to fit a certain
purpose, he alters only that single block. He
does not cut into the block to ascertain its com-
position or strength; because he is confident that
it is suitable for his purposes.

For the mason, the confidence in the
quality of the block is of utmost importance. He
must have confidence in the original design and
composition of the block. He also must have
confidence in the process by which it is made. If
either product or process are deficient, the wall
that is built by the mason will also be of poor
quality, no matter how well he does his job. In
addition, he must use the proper block for the
proper job. If, for example, he uses a ceramic
block intended for decorative use to build a load-
bearing wall the result will be disastrous, in spite
of the fact that the block performs exactly as its
specifications required.

Similarly, a systems designer/developer
must have confidence in the quality of the objects

Review of Accounting Information Systems

Volume 1, Number 4

with which he builds his system, and must know
how the designers of these objects intended them
to be used. Such confidence comes with knowl-
edge of the design/development process and
product. If either process or product is defi-
cient, then the system built with them will also
be deficient.

The Risks of the Object-oriented Approach

Reusability of code and inheritance of
characteristics and behaviors can minimize sys-
tem investments. Yet, successful system devel-
opment utilizing the object-oriented approach
demands that object specification is done right
the first time. The development of deficient ob-
jects that are reused, or whose behaviors and
characteristics are inherited by other objects,
presents a significant problem. This problem is
exacerbated by the fact that objects function like
black boxes. Using this approach, a program-
mer may not have an opportunity to “peak in-
side” and audit the object before it is used in the
system. Instead, when he takes objects off the
shelf to use in his design, he must rely upon the
specifications of those objects and the accuracy
and integrity of their construction. Moreover,
since the objects the programmer uses are quite
likely themselves to be constructed using other
objects, the chain of dependence can stretch back
almost without limit.

Minimizing the Risks

While it is possible to reduce the risks
involved with object-oriented systems, it is ex-
tremely difficult to eliminate them entirely with-
out also eliminating the advantages of object-
oriented systems. As with most business en-
deavors, one must evaluate the benefits to be
gained from increased control and weigh them
against the costs of implementing the necessary
security measures.

_ To begin with, one must divide object-
oriented languages into two categories: those
that allow the user to develop new classes, and
those that simply provide a library of useful ob-

jects with which to build applications. Lan-
guages in the first category include C++ and
Smalltalk, while languages in the second include
Visual Basic and Microsoft Access. Clearly, the
first category is more likely to be used by pro-
fessional programmers and subject to traditional
development and change controls. The second
category is more likely to be used by end users.
Since it is not possible to cover both categories
in a single paper, the following discussion is
limited to the second category of languages, us-
ing Microsoft Access and Visual Basic as exam-
ples.

Systems developed using object-oriented
techniques are subject to the same risks that have
always existed in computer software, particularly
end-user systems which frequently are developed
by people who are not aware of the potential
problems. However, object-oriented systems
present additional risks, particularly from the
point of view of the auditor, because much of the
system specification is not visible. For example,
an Access database can allow one to embed an
Excel spreadsheet as a field in a table using Ob-
ject Linking and Embedding (OLE). The
spreadsheet is not actually stored in the database.
Instead, a dynamic link is created from the data-
base to the spreadsheet. The advantage of this
approach is that if the spreadsheet is updated, the
database always shows the most current data.
Unfortunately, this also means that in order to
audit the database it is also necessary to audit the
spreadsheet. Indeed, the spreadsheet can contain
embedded Word documents, which can, in turn,
contain other embedded databases.

Identifying Well-Controlled Sources

To minimize such risks, users must
identify a well-controlled source of “starting ob-
jects.” Such object sources can include vendors
such as Microsoft or Borland, or other reliable,
independent software providers. While there
obviously is no guarantee that software produced
by firms such as these is foolproof, for most
practical purposes, one can assume that their
objects are error-free. At least, they are more

" Review of Accounting Information Systems

Volume 1, Number 4

reliable than objects such as Visual Basic con-
trols (VBX files) written by an associate down
the hall.

When defining a set of starting objects,
one should also consider whether or not to per-
mit the use of objects that utilize a network, par-
ticularly one that might go outside the organiza-
tion. The basic function of an object is to per-
form a task without requiring that the application
developer know how that task is performed. If
the task is to retrieve data, it may not be clear
that the object actually is retrieving the data via a
network from an uncontrolled source. In turn, it
may not be apparent to either the developer or
the auditor that the object can also update a data-
base in a way that bypasses normal control pro-
cedures. Admittedly, these examples represent
extreme (and unlikely) situations, but without ac-
cess to the object’s source code it is not possible
to guarantee network control.

From the starting set of controlled ob-
jects, the next step is to use these objects to cre-
ate applications, a task which usually involves
creating new objects. For example, Microsoft
Access treats forms, reports, queries, and even
Wizards as objects which can be stored in a li-
brary database for use in other applications or by
other application developers. A useful tool for
risk management in the object environment is the
object library catalog (OLC).

The Object Library Catalog

The object library catalog (OLC) is an
inventory of all audited objects in use in the or-
ganization. Specifically, it includes the name of
the object, its owner(s), a description of the ob-
ject’s function, a listing of those systems which
reference it, the dates upon which the object
were modified and by whom, and a copy of the
code, if available. The purpose of the OLC is
to identify for the developer and the auditor the
object’s source and the magnitude of its risk.

The object library catalog identifies the
source of risk first by identifying the objects in

use. If an object is not identified in the OLC, it
should be considered as a potential threat to the
accuracy, integrity and security of system proc-
essing. The presence of an object in the OLC
provides limited assurance that system manage-
ment and auditors are aware of its existence and
have evaluated its processing.

The object library catalog provides addi-
tional information to the auditor in the assess-
ment of an object’s risk. The magnitude of this
risk is a result of three factors: the function of
the object, the extent of the object’s use, and the
object’s development/maintenance history. Each
of these factors is defined in the object library
catalog.

The function of the object relates to its
business or systems purpose and appears in its
description in the OLC. From this description,
the auditor may evaluate its risk. For example,
an object whose function is to execute a signifi-
cant business calculation (e.g., amortization of
debt repayments) would have associated with it a
high degree of risk. On the other hand, an ob-
ject whose function is to provide a choice of
menu options would be identified as having low
risk. Risk is also magnified by the extent of the
object’s use. An object that is referenced by
only a limited number of systems within a single
user area would have low risk, since the impact
of an intentional or unintentional error is iso-
lated. Objects, however, that are used by multi-
ple systems in multiple areas would have signifi-
cantly higher risk.

Documentation of development and
change history provides additional assurance as
to the integrity, accuracy and security of the
code. Unmodified objects, developed by exter-
nal vendors, would generally be considered reli-
able. Similarly, objects developed and main-
tained by the organization’s information systems
staff would have greater reliability than those
developed and maintained by end users. Audi-
tors also should be concerned with last change
date, particularly, if the object had been re-
viewed during the course of their last audit. If

Review of Accounting Information Systems

Volume 1, Number 4

the object has undergone review and remains un-
changed, its reliability may be further assured.

Controlling Object-Oriented Risks

The unique risks of object-oriented sys-
tems fall into two basic categories: (1) because
objects are designed to be used as black boxes, it
frequently is not possible to see the internals of

an object or to determine what other objects it .

may use; (2) because of the ability of object-
oriented systems to link to other objects dynami-
cally during execution, it may not be possible to
tell which objects a system accesses just by
looking at the system’s code.

The first type of risk is controlled
through an iterative process. If an object was
developed by an approved vendor or is listed in
the OLC, the only additional requirement is to
ensure that it is used within the limits of its
specifications. If so, it can be assumed that the
object adds no new risks to the system.

If the object is being developed as a new
object, it is necessary to verify that it consists

termine its risk level. If it consists entirely of
low-risk objects, it is irrelevant how those ob-
jects are implemented.

Controlling the second type of risk, dy-
namic access of objects, involves two factors: (1)
be aware of what actions or object properties will
create a dynamic link; (2) if at all possible, re-
strict the user’s ability to access objects outside
the current system. Although an auditor clearly
does not need to understand the programming
details behind dynamic access, he should under-
stand the basic concept and be able to identify
the statements that indicate that dynamic access
is being used.

Software designed to run under Micro-
soft Windows can access data and code dynami-
cally using three techniques: (1) dynamic data
exchange (DDE); (2) dynamic link libraries
(DLL); and (3) object linking and embedding
(OLE).

DDE was developed as a mechanism for
implementing client-server activities. For exam-
ple, consider the situation shown in Figure 1.

only of low-risk
objects that are used
in ways that do not
add a risk to the
system. For exam-
ple, an Access ob-

Figure 1

ject that uses a re-
stricted database
should verify that
the user is author-
ized. Once this has
been done, the new
object can be con-
sidered low-risk
and can be added to

A

DDE Request

Send Me B3:F6

ABCDEFGH

the OLC. The re-
sult of this approach
is that it is never
necessary to look at
more than the speci-
fications of the cur-
rent object to de-

v

Access Database

i

B3:F6

O ~NO GO P WN -

Excel Spreadsheet

Review of Accounting Information Systems

Volume 1, Number 4

An Access database needs a piece of data
which is calculated by an Excel spreadsheet.
The database initiates execution of the spread-
sheet, requests that a particular range of cells be
copied into the database, then closes the spread-
sheet. This means that for purposes of risk con-
trol, the spreadsheet is part of the database sys-
tem. The functions in Microsoft Access that
control the use of DDE all begin with the letters
“DDE.” In Visual Basic a DDE connection is
called a link, and the control properties and
events related to DDE processing all begin with
the word “Link.” If any of these key words or
phrases are used in a system’s code or in a con-
trol’s properties, the system is using DDE and
the system or document which is being connected
to the current system should be identified and
audited.

A DLL is a library of functions and pro-
cedures to which a program is connected at run

time rather than during compilation. The rea-
sons for this approach are important: a DLL can
be upgraded without having to change or recom-
pile the program that uses the DLL, and a DLL
can be used by many different programs at once.
As a result, Windows software uses DLLs exten-
sively. For example, in most Windows applica-
tion software, if you select file processing op-
tions such as OPEN, SAVE, or BROWSE, the
program opens a standard window (called the
common dialog window) that allows you to
search for the directory or file that you want.
The program code that drives this function is
contained in a DLL (commdlg.dll) located in the
Windows directory, and is shared by virtually all
Windows software. Figure 2 shows the relation-
ship between the common dialog DLL, located
in the windows directory, and two programs that
use it, each located in a different user directory.

It should be clear that although DLLs are

Figure 2
Mary's Directory
Program A |
Program B |
Program C
- - — -
+ Internal —|
| Functions | “Windows
— Directory
v
COMMDLG.DLL
A
John's Directory lf ﬂ
Program X i
Program Y |
Program Z
Tintérnal |
'Functionsi

Review of Accounting Information Systems

Volume 1, Number 4

very powerful, useful, and almost impossible to
avoid, they also make it extremely difficult to
determine exactly what code a program executes.
If the only DLLs that a system uses are those
provided by a reliable vendor the risk is very
low, although it is difficult to be certain that the
original DLL has not been replaced. However,
a program can also call user-written DLLs,
which generate a much higher level of risk and
requires that the DLL be audited as part of the
system. In Visual Basic or Microsoft Access,
“one can tell if a system uses a user-written DLL
by looking for a DECLARE statement that con-
tains a LIB clause. This statement identifies the
subroutine being used and the name of the DLL
that contains it.

The third technique is object linking and
embedding(OLE). There are two different types
of OLE objects: linked objects and embedded
objects. Both allow a system to connect to an
external object, even one developed by a differ-
ent application. For example, an OLE object
placed in a Visual Basic form can connect to an
Excel spreadsheet. The difference between
linking and embedding relates to where the ob-
ject’s data is stored. In the previous example, if
the spreadsheet is embedded in the form the

spreadsheet data is stored in the Visual Basic ap-
plication. Changes to the data can only be made
through the Visual Basic program and they do
not affect the original file. If the spreadsheet is
linked to the form, a connection is made to the
Excel file and no data is stored in the Visual Ba-
sic system. Figure 3 demonstrates the two con-
figurations.

When the Visual Basic system is run-
ning, if the user double-clicks on the image of
the linked spreadsheet, Excel is activated and the
spreadsheet can be manipulated as usual in Ex-
cel. Furthermore, any changes made to the
spreadsheet outside the Visual Basic system, us-
ing Excel, will be reflected in the linked object
the next time the Visual Basic system runs. With
the embedded spreadsheet, a copy is inserted in
the Visual Basic object but there is no further
connection to the original spreadsheet or to Ex-
cel.

In order for an object-oriented applica-
tion to use OLE, it must contain either an OLE
control (Visual Basic) or an object frame
(Access). In Access an OLE object can also be
created and manipulated during execution of a
program. This requires a “Dim...Object” state-

Modi

Figure 3

Spre(ad heet

Excel

Double Click

[

Copy |

-~ -
~ -
-~

. Spreadshee

_____ B

Visual Basic Program
with Embedded
‘ Spreadsheet

Spreadsheet

Spreadsheet
Image

Visual Basic Program
with Linked
Spreadsheet

Review of Accounting Information Systems

Volume 1, Number 4

ment to declare the object, and either a
“CreateObject” statement or a “GetObject”
statement to use the object. In Visual Basic the
OLE control must be defined as part of a form,
although it may be invisible when the application
is running. Statements that manipulate the con-
trol during execution use OLE properties such as
Action, Autoactivate, SourceDoc, Sourceltem,
or properties whose names begin with “Object”
or “OLE”.

The first step in controlling these risks
requires restricting the ways in which object-
oriented programs can work. For example, if a
Visual Basic system creates a dynamic link to
another system such as an Excel spreadsheet, do
not permit the user to supply an arbitrary object
name (i.e., the name of the spreadsheet) at run
time. Instead, provide a list of acceptable Excel
files from which the user may select. This prin-
ciple should be applied to any external data ac-
cess, whether via a dynamic link to a database,
reading or writing a file, accessing a network,
etc. A list of permitted data sources should be
coded into the program or stored in a secure da-
tabase and the user required to select from this
list. If it is not possible to provide a list of data
sources, the system should at least prohibit ac-
cess to restricted or unsecure sources.

Auditing An Object-Oriented System

The first step when auditing any system
is to define the scope of the audit. A valuable
tool in this process can be the object library
catalog (OLC). The existence of an object in the
catalog can enable the auditor to make some as-
sessment of its risk. The omission of an object

from the catalog may also identify an audit can-
didate.

Using an OLC entry (which includes a
description of the object’s function, a listing of
the systems which reference it, and the dates
upon which the objects was modified and by
whom) the auditor may judge the level of risk.
Audit candidate objects are those which either
perform significant business function or are

linked to numerous applications. Auditors may
choose to test these objects during an audit, es-
pecially if they were recently implemented or
modified.

Another element of the OLC entry is a
copy of the object’s source code. To audit a
computer information system thoroughly, it is
necessary to examine the program code with
which the system is implemented. Although
validating a system by testing its operation can
indicate that the system behaves properly in
normal use, it cannot determine what the system
will do under abnormal conditions. For virtually
all application-level object-oriented languages,
this means that it is necessary to print the appli-
cation using whatever facilities the programming
language provides, to show both the code used to
create the application and the properties of the
objects used. One cannot verify the correctness
of a typical object-oriented application system
simply by viewing the code for individual objects
(controls) on the screen. Since the code usually
is presented in alphabetical order according to
the names of the controlling objects, simply
finding all the code is not an easy task. Fur-
thermore, the values assigned to properties of
objects can have a significant effect on the op-
eration of a system. For example, in Visual Ba-
sic the DataField and DataSource properties
control database access, while the various Link
properties can create a run-time link between a
control and other applications.

Printing the basic program information
for typical object-oriented application languages
usually is not a problem. In Visual Basic, for
example, if the program files are saved as text
files they can be displayed or printed with any
ASCII text processor. Alternatively, the Visual
Basic PRINT function gives one a choice of
printing selected forms or all forms. For each
form, one can print an image of the form; the
code that defines the form, all its controls, and
all their properties; and all procedural code for
the form and its controls. In Access, the file
menu provides a PRINT DEFINITION function
which prints the basic table definitions, and Mi-

Review of Accounting Information Systems

Volume 1, Number 4

crosoft provides a database documentor as an
add-in package.

Unfortunately, the program documenta-
tion capabilities provided as part of these object-
oriented application languages are fairly basic,
and program analysis capabilities are non-
existent. An auditor who works regularly with
sophisticated applications developed in a few
specific languages should seriously consider us-
ing third-party audit support software. The re-
ports produced by these packages usually are
more extensive and more flexible than those pro-
vided by vendors.

For example, a common problem is to
determine whether or not the current version of
an Access database system is the same as a base
version. Because Access stores both data and
objects in a single file one cannot simply com-
pare the files, since any change in the data would
cause the files to be different. However, a typi-
cal third-party audit package will compare two
databases and produce reports describing any
differences between them. The package should
have options to specify which objects to com-
pare, whether or not the data also should be
compared, and which reports should be printed.
Commonly, such a package will also allow one
to compare similar objects in a single database.
In choosing such an audit support tool, it is also
useful to select a tool that will analyze the struc-
ture of a database, showing such characteristics
as relationships between tables, relationships
between objects, cross references between ob-
jects, cross references between subroutines, for-
matted listings of subroutine code, properties of
objects, and so on.

Maintaining Control

Once an information system has been
audited and certified to be acceptable, it is criti-
cal to ensure that the system will not be altered
by unauthorized personnel. The precise tech-
nique to be used here depends on the software
being used and the facilities available. For ex-
ample, Visual Basic provides little in the way of

10

security locks, but it does allow the developer to
compile the final system into an executable
“.EXE” module which cannot be altered by most
programmers.

On the other hand, Microsoft Access
provides extensive security locks on all objects in
a system, from the data through reports, forms,
etc., and can be set to restrict access to specific
groups or specific individuals. These security
features not only control access to a specific ap-
plication, they control the ability of programmers
to use objects developed for one system in a dif-
ferent system, or to link to a database through an
OLE connection. Software that is to be made
available for general use can be placed in a spe-
cial type of Access database called a library and
locked to be made read-only for unauthorized
personnel.

The most difficult part of the system to
control is the dynamic link libraries. Since the
link between the calling program and the library
is made during execution, there is no way to
guarantee that the DLL has not been changed
since it was audited. Nonetheless, there are
some actions that can be taken to reduce the risk.

In the standard, single-user DOS or
Windows environment there is no way to lock a
file or directory to protect it from change. In
this situation the only thing that can be done is to
identify all DLLs used by a system, then com-
pare them to base versions of the same files. In
a network environment there usually are ways in
which files can be secured against unauthorized
change, especially if they are located on a sepa-
rate file server; the exact technique and the de-
gree of sophistication vary with the network
software being used. In the non-network envi-
ronment, however, the best solution again lies in
third-party software. Software security packages
can be obtained for very nominal prices, and can
restrict the ability of an unauthorized user to
change, read, or even see specific files or direc-
tories.

Perhaps the final question to ask regard-

Review of Accounting Information Systems

Volume 1, Number 4

ing software control is: how much is enough?
To begin with, it is impossible to prevent a
highly motivated, highly skilled expert from ac-
cessing software or data. What one person can
lock someone else can unlock. What one can do
is to make it as difficult as possible for the un-
authorized user. If nothing else, this greatly in-
creases the chances that an intruder will be
caught. However, it also makes it more difficult
for authorized system users to do the work they
need to do, and for programmers to maintain or
improve the system. In general, the more exten-
sive the controls on a system the more difficult it
is for legitimate users to use the system. This
certainly does not mean that control over object-
oriented software should be ignored. However,
the degree of control and security should be pro-
portionate to the value of the system and not in-
stalled simply because it can be done.

Conclusion

The same properties—reusability and in-
heritance—that have resulted in the rapid accep-
tance of object-oriented languages and methods
present auditors with a formidable challenge.
These properties, which support the accelerated
development of new applications, assume the re-
liability of the objects used in the construction of
the system. It is the responsibility of the systems
auditor to put in place procedural and system
controls that ensure that objects meet the devel-
opers’ functional expectations. Subsequently,
the systems auditor must review and test the
controls and code to ensure that they have not
been later compromised. In this new environ-
ment, controls are of the utmost importance be-
cause any new object oriented system is only as
strong as its weakest object.

Implications for Future Research

This discussion has identified some of
the weaknesses inherent in the object-oriented
approach to systems design and development.
Using examples drawn from languages such as
Microsoft Access and Visual Basic, it has at-
tempted to recognize the shortcomings that may

11

affect system integrity and present a substantial
risk to the auditor. Significant research opportu-
nities remain open to investigation. Researchers
are encouraged to evaluate from a technical per-
spective the risks inherent in other object-
oriented languages (C+ + and Smalltalk), identi-
fying language specific functions that can be
used to minimize such risks. It is also necessary
to assess the level of awareness within the audit
community as to the magnitude of risk presented
by object-oriented design approaches and appli-
cations. As older systems are replaced by ob-
ject-oriented applications, these risks will be-
come more evident. In turn, auditors will have
to enhance their technical understanding of ob-
ject-oriented languages and their capabilities.
Finally, it is imperative that researchers develop
an inventory of hardware and software-based
tools that can ensure the integrity of objects in an
intranet and Internet environment.

References

1. W. P. Stevens, G.J. Meyers, L.L. Con-
stantine, “Structured Design,” IBM Sys-
tems Journal, Vol. 13, No. 2, pp. 115-
139, 1974.

E. Yourdon and L.L. Constantine, Struc-
tured Design, Prentice Hall, Englewood
Cliffs, N.J., 1979.

Review of Accounting Information Systems Volume 1, Number 4

12

