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ABSTRACT 

 

This review paper identifies benefits from various Decision Support Systems (DSSs) and 

introduces a range of examples from the literature. Those examples are organized according to 

the driving technological architecture of the DSS. Benefits may impact a decision or the decision-

making process. Some techniques for assessing the benefits of a particular DSS were also 

surveyed. 
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INTRODUCTION 

 

ecision support systems (DSS) now transcend any particular academic discipline. Computer-based 

decision support is used and taught in all business functional areas, many engineering fields, health 

care, and many other domains. In addition to its multiple areas of application, DSS today also exhibit 

a wide range of driving technologies.   

 

DSS Defined 

 

 A Decision Support System (DSS) is “a computer-based system that supports choice by assisting the 

decision-maker in the organization of information and the modeling of outcomes.”  (Sauter, 2010, page 13)  There 

are two essential ways that DDS is distinguished from other computer-based systems – first, a focus on decision-

making and second, an interactive usage mode requiring both the system and the decision-maker to contribute to the 

decision-making process. A DSS is most useful in the context of semi-structured and unstructured problems. If the 

decision is made by the system without interaction with a decision-maker, the system is not a DSS; it is something 

else – perhaps an expert system or a transaction processing system. 

 

DSS Categories 

 

 This paper is organized as follows: After this introductory section, we will discuss the process for 

evaluating DSS benefits. That process varies according to whether we are evaluating a DSS yet to be built as part of 

a justification process or if we are evaluating a DSS that has been built. In the former case, the options for evaluation 

are necessarily limited because the system does not yet exist and can only be discussed in hypothetical terms. In the 

latter case, we have the option of using the DSS as part of the evaluation or to audit test cases in which it has been 

used. The evaluations section is followed by a section discussing benefits from DSS. 

 

 The paper gives examples of some of the types of DSSs and some of the benefits that have resulted from 

them. Those examples are organized according to the type of DSS where we are categorizing the DSS according to 

the type of underlying technology which is most dominant in the particular DSS. The type of DSS is based upon 

which element of the system is most significant, according to a framework from Power (2002). Power’s framework 

categorizes DSS as being communications-driven, data-driven, document-driven, knowledge-driven, or model-

driven. To this set of categories, we add the category of graphics-driven for those DSS in which the driving element 
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is a graphical display of data. As an example of a type of DSS in this latter category, we might include a DSS built 

upon data from a geographic information system that displays data spatially. We end with concluding remarks. 

 

 The contribution of this paper is that we illustrate some of the myriad of benefits that a DSS can achieve 

using concrete examples from the literature. We also discuss how to evaluate the benefits of a specific DSS. This 

paper is designed to help readers gain a better understanding of the range of domains, both practical and scholarly, 

where DSS are used today.  

 

DSS EVALUATION 

 

What Is Evaluation? 

 

 Evaluation is a broad concept. (Adelman, 1992) It is an iterative process with the purpose of assessing the 

overall value of a system. It is distinct from but subsumes both validation, determining whether the right system is 

built, and verification, ensuring the system is built to specifications. (Turban et al, 2011).  The notion of what 

constitutes a successful system has been evolving (Petter et al, 2012) and therefore what an evaluation involves 

changes as well.  See Hosack et al (2012) for a thoughtful view of the future of DSS and DSS research. 

 

 There are many different types of evaluations. When a cost-benefit analysis is conducted, outcomes are 

measured in dollars. In contrast, a cost-effectiveness evaluation measures outcomes in non-financial terms such as 

the time required to make a decision. . An evaluation of overall effectiveness assesses to what extent the system is 

effective in assisting the organization to reach its goals.  Efficiency evaluations determine whether more output 

could be attained with no increase in inputs, or whether inputs could be reduced while maintaining the current level 

of output. A goals-based evaluation is often conducted, but goal-free evaluation can be done, in which the actual 

effects of the system on the decision-maker(s) are evaluated in the absence of what individuals say they want to 

achieve. Formative evaluation is done assuming system continuation, with the objective of seeing how the system 

can be improved. Summative evaluation considers whether a system should be continued and, if so, at what level 

(Patton, 1982). 

 

 Organizations intending to evaluate a DSS should be mindful of the distinction between the evaluation 

framework, which is a strategy used to organize the evaluation process, and evaluation methods, which are applied 

to evaluate specific goals and are subsumed within the evaluation framework (Antunes et al, 2012). The framework 

should specify who will be involved in the evaluation, whether the evaluation will be conducted in situ, the expected 

cost of the evaluation, associated timelines of the process, the accuracy of the tools used in the process, and how 

feedback will be handled. All of these items need to be outlined before the evaluation is underway. Additionally, 

care must be taken in the handling of evaluation content, which includes any data that will be collected, any 

interpretations made of the data, and any recommendations offered (Patton, 1982). 

 

Why Evaluate? 

 

 When an organization invests in a DSS, the investment decision is based on the premise that the DSS will 

improve the organization’s performance. Evaluation assists decision-makers in their ongoing intra-organizational 

allocation of resources. If the results of the evaluation indicate that decision-making and organizational performance 

are enhanced by the DSS, then resources will continue to be allocated to its development and utilization (Adelman, 

1992). In some situations, however, formal evaluation might not be necessary. In an environment characterized by 

rapidly changing conditions, the evaluation process itself should be viewed as evolving and adaptive, such that 

feedback about the DSS can be provided on a near-continuous basis (Hallikainen & Chen, 2005). 

 

What Is Being Evaluated? 

 

 With respect to system evaluation, Sauter (2010) distinguishes between testing the system and testing 

system implementation.  The concern in the former is technical appropriateness, while in the latter evaluation is 

concerned with overall usefulness of the system.   

 

http://www.cluteinstitute.com/


Review of Business Information Systems – First Quarter 2013 Volume 17, Number 1 

© 2013 The Clute Institute http://www.cluteinstitute.com/  9 

 To assess technical appropriateness, many aspects of the DSS can be tested in isolation.  However, all 

possible contingencies can never be tested when working with a DSS since system designers cannot anticipate the 

complete range of uses to which users will subject the DSS. Furthermore, because DDSs are used for semi-

structured and unstructured problems, the true accuracy of any decisions that the user working with the system 

produces is generally difficult to assess (Rhee & Rao, 2008). 

 

 Scott (1995) specifies three approaches that could be used to determine whether the system is an 

implementation success: 

 

 Evaluator determines whether DSS helped the organization acquire resources or improve its usage of scarce 

resources (input focus). 

 Evaluator measures the extent to which DSS improved organizational effectiveness (output focus). 

 Evaluator establishes whether DSS provides an improved process for decision-making, with the attention 

on the fact that it is a support system (process focus). 

 

 Antunes et al (2012) argue that evaluation methods should be explicitly designed to account for the 

nuances associated with collaborative systems in contrast to general information systems. Evaluation of 

collaborative systems (including GDSS) should consider group dynamics, environmental context in which it is 

situated, and impact of the technology on the group’s processes as well as tasks.  The authors incorporate a model of 

human performance in organizational settings as proposed by Reason (2008). Situation and situation control 

dimensions combine to form three performance levels. The three levels and corresponding characteristics of interest 

in evaluation are: 

 

 Role-based performance, wherein group activity is essentially a set of independent activities 

o Focus is on the individual 

o Data gathered is about efficiency and usability 

 Rule-based performance, in which group activities are perceived to be coordinated 

o Evaluation focus is on a mixture of individual and group 

o Data gathered concerns productivity and conformity 

 Knowledge-based performance, comprising interdependent tasks 

o Focus is on the organization and group levels 

o Data collected is about interaction, participation, satisfaction, consensus, usefulness and cost 

reductions 

 

When Should Evaluation Be Done? 

 

 Generally speaking, the purpose of the evaluation determines when it should be done. For example, 

evaluations can be done early in the development process as part of a cost-benefit study, justifying subsequent effort 

to create the DSS. Evaluations can also be done late in the development process as part of a software testing effort. 

Many academics conduct evaluations of the DSS in the field in order to document the quality of their scholarly 

contribution and thereby justify publication. 

 

 Based on the premise that DSS developers should use different evaluation approaches from traditional 

methods used by Information Systems (IS) developers, Miah et al (2012) suggest a DSS evaluation strategy 

grounded in a design science approach. Specifically, they implement a mental model approach that incorporates 

checkpoints in six phases of the development process as advocated by Peffers et al (2008). They assert that an 

evaluation strategy should be based within the problem domain context since “most DSS development problems 

result from poor identification of end users’ needs.” The six-phase checkpoints are: (1) Problem definitions; (2) 

Design objectives; (3) Artefact design and development; (4) Design context; (5) Effectiveness and efficiency 

measurements; and (6) Communication of results. The authors evaluate their interpretive approach using interviews 

with four individuals. Input from the targeted stakeholders suggests that all six phases are important components in 
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the process. Communication of results is considered to be the most important phase. That being said, design context, 

as well as effectiveness and efficiency, are also viewed as very important by all respondents.  While acknowledging 

the limited number of participants in the process, the authors contend they present an important development-

oriented approach to consider in future DSS evaluations. 

 

 In contrast, Antunes et al (2012) suggest a framework for evaluation based on product development stages 

broken down as: conception, implementation, production, reengineering, and procurement. Adelman (1992) states, 

“evaluation is an inherent part of the prototyping development approach.” Turban et al (2011) indicate evaluation 

activities should be repeated whenever the prototype is changed. Similarly, Hallikainen & Chen (2005) emphasize 

the importance of conducting regular evaluations throughout the system development process. Evaluation should be 

fed into a feedback loop, leading to corrective actions as applicable. Rennie & Singh (1995) state, “effective 

evaluation is ‘an on-going, parallel process which is indeed codependent, iterative and cyclic.’” 

 

Who Should Be Involved In The Evaluation Process? 

 

 Ideally, evaluation includes a wide range of people. Hallikainen & Chen (2005) indicate that all relevant 

stakeholders should be specified during evaluation. Rennie & Singh (1995) emphasize that participatory evaluation 

is most effective. Jiggins (1995) states, “reality is not a given actuality waiting to be discovered by the detached 

scientist, but a constructed understanding -- an informed perception -- developed by those engaged in the activity 

under scrutiny.” Because determining whether observed changes in a setting are caused by changed inputs often 

involves contextual interpretation, it is usually best to include personnel in the evaluation process who are in a 

position to be able to make appropriate conclusions. 

 

 An evaluation facilitator should know the system, the context in which it is (or will be) used, and the 

corporate culture. Additionally, he or she should have good conflict resolution skills, be flexible and adaptive, 

creative and able to work with individuals and in group settings. An evaluation team should include DSS users as 

well as individuals who will be affected by changes resulting from the system’s use. People selected should be able 

to incorporate evaluation feedback to make improvements to the system or the environment in which it is used. They 

should believe that the evaluation is worthwhile, and they should be able to devote sufficient time to the evaluation 

process (Rennie & Singh, 1995). 

 

 Ultimately, the focus of the evaluation process will be different depending on who initiates the process as 

well as who is conducting the evaluation. Evaluator knowledge and skills will ultimately determine whether 

organizational interests are appropriately considered in the evaluation process (Hallikainen & Chen, 2005). 

 

How Is Evaluation Performed? 

 

 The prototyping approach often used in decision support system development suggests the use of a 

multifaceted evaluation approach. Technical, empirical, and subjective facets comprise such an approach. Technical 

evaluation methods relate to system verification, whereas empirical evaluation methods assess validation. Subjective 

evaluation methods are applicable to both verification and validation, although they are used primarily in evaluating 

validation (Adelman, 1992). A number of recent studies are discussed below, indicating varied evaluation methods 

suggested and in use. 

 

 The Defense Acquisition Guidebook, Chapter 9 “Test and Evaluation,” (Defense, Department of, 2012) 

provides details of the U.S. Department of Defense testing and evaluation strategy for the three primary decision 

support systems used to acquire materiel and services. An event-driven integrated strategy situated within the 

program’s overall acquisition strategy is used. The author claims the process used results in resource efficiencies and 

an enhanced data set useful for separate evaluations. The Department bases the integrated strategy on an evaluation 

framework.  This framework indicates the links between key program and user decisions. It also describes 

developmental and operational areas requiring evaluation related to those decisions. Key performance parameters, 

key system attributes, critical technical parameters, key test measures (measures of suitability and effectiveness), 

planned test methods, key test resources, facility and infrastructure needs are specified. Additionally, any limitations 

or major risks to completing the evaluations are identified. The author notes that it is important in evaluation 
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framework discussions to provide concise descriptions of links between key decisions in the system life cycle, areas 

needing evaluation to support those decisions, and the test methods needed to get the data for the evaluations. 

 

 Examining research in the area of financial decision support, Alic et al (2012) indicate much of the focus 

falls into three areas: financial analysis (most common), risk management, and fraud detection. Most of the studies 

in their sample analyzed examined needs aspects of the DSS without explicitly involving the users. The authors 

point out that many evaluation methods, both quantitative and qualitative, are discussed in the design science 

literature as being appropriate, but all of the financial DSS studies they analyzed conducted an evaluation based on 

metrics such as precision, recall or accuracy, or based on simulation.   

 

 Barfod (2012) examines decision support in the realm of transport infrastructure assessments. Barfod 

suggests that in recent years, some organizational decisions need to incorporate certain key variables that are not 

socio-economic in nature, and assessment methods need to be used that can adequately capture the variables. 

Claiming that much prior research used simplistic cost-benefit analysis, the author proposes a composite model for 

assessment (COSIMA). The COSIMA DSS proposed uses multi-criteria decision analysis (MCDA) in conjunction 

with a cost-benefit analysis (required by regulatory authorities in some settings) to assess complex decision 

problems. The author suggests incorporating a decision conference including not only the decision-maker(s) but any 

other stakeholders who might interact with the DSS. This would constitute an intervention phase within the 

preliminary problem-structuring phase in which model building occurs. It would also allow for assessment revision 

to arrive at a shared understanding before the detailed analytic structure is derived. 

 

 Asserting that examining the information load in terms of alternatives provided is more important than the 

number of attributes provided in the context of online electronic commerce, Tan et al (2010) explicitly manipulate 

the number of alternatives provided, examining the effect of decision aids on the decision performance. Using 

resource-matching theory, the authors test impacts on decision performance of specific decision aids (low screening 

support, high screening support, and weight evaluation support) in low and high product attribute-load conditions. 

They show that “DSS can lead to greater information processing or effort minimization, depending on whether there 

is a match or mismatch in cognitive resources available to the consumers and those demanded in the task 

environment.” 

 

 Karbing et al (2012) discuss the importance of conducting a retrospective evaluation of a DSS using 

archival data before conducting a prospective evaluation using live data. Quality of model fit can be evaluated with 

this retrospective evaluation in order to avoid in-use errors that might arise should the initial evaluation not be 

performed. 

 

 Phillips-Wren et al (2011) use a combined process-outcome DSS evaluation approach. They suggest that 

linking the DSS benefits to the DSS architecture provides a better measure of the underlying decision value to the 

individual user than evaluating either the decision-making process or the outcome of the process in isolation. The 

approach they consider is that suggested by Mora et al (2005), wherein a learning component is added to the 

intelligence, design, choice, and implementation decision phases first introduced by Simon (1960), and a four-level 

systems approach links the technical architecture of the DSS to the outcome and process elements at the top level. 

The authors use Analytic Hierarchy Process (AHP) to evaluate an intelligent DSS published by Lee (2004). They 

demonstrate how AHP allows for unique criteria weights assigned to the DSS components for each individual user, 

and that the user effectiveness is enhanced by the application of AHP to a combined process-outcome approach. 

 

 Using a simulation method, Ben-Zvi (2012) examines whether perceived DSS effectiveness is affected by 

six variables, including: familiarity with the system, perceived usefulness, use of system, perceived contribution to 

performance and success, user satisfaction, participation in defining the system, and system expectations being met. 

The results suggest that perceived DSS effectiveness is positively related to perceived usefulness, perceived 

contribution of the system, whether the system met users’ expectations, and user satisfaction. However, no 

significant relationship is identified between system use, familiarity with the system, and participation in defining 

the system with perceived DSS effectiveness. The author concludes that researchers should be mindful of the 

importance of including certain subjective measures when examining the perceived effectiveness of a DSS. 

Additionally, the author indicates practitioners should be aware of the inverted U-shaped relationship between 
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system complexity and performance identified by this study and others before it. At some point, a system can 

become too complex for users to be able to use them effectively. 

 

 In an experimental setting, Kayande et al (2009) examine whether model-driven DSS that facilitate the 

alignment of users’ mental models with the system’s recommendations are perceived as more valuable by the users. 

A dual-feedback DSS is designed to provide both feedback to help users correct their mental models and feedback 

about how much more could be gained by adjusting their mental model. The authors hypothesize that deep learning 

resulting in a relatively permanent change in someone’s mental model would lead to a reduced cognitive dissonance 

and, therefore, improved DSS evaluations by users. Their findings suggest that, in order to encourage use, DSS 

should be designed to facilitate users’ understanding of the basis for the DSS recommendations and why those 

recommendations will positively affect performance.  

 

BENEFITS 

 

 Generally, usage of a DSS may result in a better decision process. That improved process may in turn 

create a better decision, but better decision quality may be difficult to document when working with semi-structured 

or unstructured problems. On the other hand, improvements to the decision process are often things more easily 

measured than decision quality. For example, we may be able to show that with a DSS, more alternatives are 

considered than without a DSS. Additionally, we may be able to show that post-DSS implementation, decisions are 

made in less time than prior to implementation. The DSS may serve to document a decision-making process and 

thereby raise confidence in a decision over and above what was possible without a DSS. It is possible that this 

higher level of confidence holds the benefit that it becomes easier to carry out the decision. 

 

 To provide specific illustration of DSS benefits, we will briefly discuss some decision support systems 

described in the literature. We will organize these examples according to the type of technology that drives the DSS. 

For each type, we will list at least one classic DSS well-known and long-known in the literature and generally 

several other systems that have been described in more recent years. The types of DSS we will include are 

communications-driven DSS, data-driven DSS, document-driven DSS, knowledge-driven DSS, model-driven DSS, 

and graphics-driven DSS. We have chosen to include these types of DDS because the examples illustrate a wide 

range of benefits arising from each driving technology. We are trying to show mostly recent efforts but also to 

illustrate the now-long history of the DSS field. 

 

Communications-driven DSS 

 

 Communications-driven DSS are systems where the driving technology is a facilitation of interpersonal 

communications. Systems in this category are sometimes called Group Decision Support Systems (GDSS), Group 

Support Systems (GSS), or Groupware. These systems can benefit group decision-making by inhibiting negative 

group behaviors while promoting the positive aspects. Since negative aspects are more pronounced the larger the 

group, these systems provided the most benefit to large groups. Groupware (messaging, conferencing, group 

document handling, work flow, utilities/development tools, frameworks, services, and vertical market applications) 

facilitates movement of documents and messages to enhance the quality of communication among group members. 

Adding the DSS components (database management, model, and user interface) and, often a facilitator, the GDSS is 

able to provide process support in addition to decision-making support. Group memory aspects of the system allow 

retrospective analysis and interpretation of the process by group members. Other benefits afforded by GDSS include 

greater flexibility in the definition of meetings and anonymity of participation by group members as needed (Sauter, 

2010).  

 

 A classic and widely-cited DSS in this category is described in Nunamaker et al (1989). In the context of a 

field study, the authors collect data about the process related to outcome effectiveness (quality of outcome and 

quality of session process), efficiency (costs and benefits relative to performing the same function manually), and 

user satisfaction (utilization rates and self-reported levels of satisfaction). With respect to effectiveness, they find 

that participation is more evenly distributed than would normally occur in a manual setting. Interviews with 

managers indicate they believe that the system provides outcome effectiveness as well. Regarding efficiency, man-
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hours are significantly reduced relative to manual settings. User satisfaction is strongly supported by utilization rates 

of the system, and this is confirmed by participants’ self-reported levels of satisfaction. 

 

 More recently, Miller (2008) studies how the presence or absence of a facilitator affects the benefits of a 

GSS. Examining process facilitation from an Adaptive Structuration Theory perspective, the author compares high- 

and low-levels of facilitator restrictiveness. The data indicate significantly different amounts and types of 

appropriation moves between the two levels of facilitator control. Additionally, the author examines the impact 

individual facilitators might have on the process. He finds substantial differences in both the quantity and the type of 

appropriation moves, and the proportion of moves involving the facilitator differ across facilitators as well.   

  

 Barkhi & Kao (2010) use data envelopment analysis (DEA) to propose an economic efficiency measure for 

GDSS performance evaluation. The measure considers both decision inputs and outputs simultaneously, making it 

potentially more useful than traditional single-factor measures. Implementing a 2 by 2 by 2 factorial design through 

variation of three context variables (communication mode, group leadership mode, and incentive structure) in an 

experimental setting, the authors demonstrate that DEA can measure each GDSS user’s performance and then 

determine how different contextual variables affect decision efficiency. Their results suggest that incentive structure 

and communication mode have a significant impact on DEA decision efficiency in the GDSS setting. They discuss 

possible extensions of their work including analyzing performance at the group level using redefined group inputs 

and outputs, and incorporating DEA methodology into development of next-generation GDSS. 

 

 Barkhi & Kao (2011) extend their earlier work to examine the impact of psychological climate on GDSS 

users’ decision-making performance. Their work specifically analyzes psychological safety, the freedom GDSS 

users believe they have to express themselves without negative impact, and psychological meaningfulness, which is 

the reciprocity felt by GDSS users in terms of returns from their input to the decision-making team. In lab settings 

where communication mode, incentive structure, and leadership mode were varied, they find that psychological 

safety does positively influence both GDSS users’ task performance and work attitude. However, with respect to 

psychological meaningfulness, they find that it enhanced GDSS users’ satisfaction with their participation but it is 

not significantly related to overall decision process efficiency. 

 

 Facilitating GDSS users in a distributed computing framework differs from the facilitation process in face-

to-face settings. Computer-mediated communication must be used, which often results in a lower level of bonding 

among group participants. This lower bonding may subsequently cause participants to have lower interest and 

energy levels during meetings. Adla et al (2011) propose a set of tools that can be incorporated in the decision-

making process to provide embedded facilitation to complement the facilitator’s intervention effort. Dialogue 

Manager, Group Memory, Session Planning, and Group Toolkit modules comprise the distributed GDSS 

architecture.  The Group Toolkit module consists of four categories:  idea generation, idea organization, idea 

evaluation tools, and solution choice. The authors examine a three-phase group facilitation process (pre-meeting, 

during meeting, and post-meeting) in a case study at a plant that specializes in liquefying gas, providing a detailed 

discussion of the process activities as they can be enabled by the proposed GDSS toolkit. 

 

Data-driven DSS 

 

 Data-driven DSS are those for which the underlying driving technology is a large stored databank. The 

earliest data-driven DSS of which we are aware is described by Donovan (1976). The system allows a decision-

maker to make ad hoc database inquiries to increase understanding in the area of energy policy. He provides a 

detailed example in order to show the importance of the interaction between an analytical system and a database 

system.  Experience with the project demonstrates that an interactive system provides an advantage in terms of 

allowing quick changes to the model based on an unexpected data series being introduced. Elapsed time to see 

computational results is reduced, compared to earlier less-interactive systems. Overall, he demonstrates that time 

loss and transfer costs are lowered with an interactive system relative to database management systems in use at that 

time that were not integrated with the analytical system. 

  

 A more recent data-driven DSS was that of Jiang et al (1998) which combines a large amount of scanner 

data for a single consumer package goods category in supermarkets in a single metropolitan area with a time-series 
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model for making both conditional and unconditional forecasts for a supermarket category. The benefit of the 

system is that it allows the decision-maker to model a forecast of a marketing policy under consideration including 

likely competitor reactions to a given competitive move. The system and its data and model increase brand 

managers’ understanding of the consequences of an action under consideration. 

 

 Ferretti et al (2011) discuss ProgettoBosco, a data-driven DSS developed to optimize data collection related 

to Italian forests and forest management. Much of the knowledge resides in local forest managers, so one goal of the 

system is to integrate this knowledge base with the new technologies unfamiliar to many of them. Using a bottom-up 

approach of cooperation, successive approximations, and experimentation the authors develop a computer-based 

framework incorporating a DSS and a relational geodatabase. The DSS provides shared, standardized information at 

a national level, effective for all forest typologies in Italy. The user-friendly interface allows both forest managers 

and technical personnel to efficiently utilize the system.  

 

Document-driven DSS 

 

 A document-driven DSS provides the decision-maker with relevant information coming from a store of 

documents.  This category of DSS has arisen more recently than other categories such as data-driven or model-

driven DSS.  Examples of document stores that could usefully drive decision-making processes would include news 

articles, user reviews or comments on websites, or emails. Also, many knowledge management systems such as 

Tiwana (2002) and Courtney (2001) are in this category. Such systems are often searchable collections of documents 

embodying “knowledge” submitted by members of a community of practice within an organization.    

 

 A recent document-driven DSS is described by Liu & Lai (2011). The benefit of their system is to facilitate 

“knowledge reuse, cooperation and sharing among workers who perform similar … tasks.” Extending their previous 

work on mining an individual’s knowledge flows (KFs), they develop an algorithm for mining and constructing a 

group KF. Using a dataset containing information about fourteen knowledge workers, the authors develop a 

prototype system to illustrate the algorithm proposed. The system performs worker cluster and group-based KF 

mining, omitting only the identification of knowledge-referencing paths phase of their proposed method. The 

benefits provided by group KF mining include facilitation of knowledge cooperation, sharing and reuse, as well as 

providing a useful reference for a novice when performing tasks. 

 

Knowledge-driven DSS 

 

 Knowledge-driven DSS use a knowledge base extracted from the tacit knowledge of an expert. An early 

example of a knowledge-driven DSS is in Pan et al (1984). Such a system makes a knowledge base available for 

interaction with a decision-maker. It allows heuristics embedded in the knowledge base to be combined with 

algorithmic knowledge found in models and data found in a database to be combined with the decision-maker’s 

insights. The difference between this type of system and a knowledge management system is that the knowledge in a 

knowledge-driven DSS is structured, often into a rule-base or some other heuristic mechanism. 

 

 Sklar et al (1990) describe a system that uses experts’ knowledge coded in an expert system to build linear 

programming models. The resulting system is able to automate the model construction process, but it is up to the 

decision-maker to describe the problem to the system and then to execute the model and interpret the results. The 

benefit of the system is to incorporate experts’ judgments into the process of constructing mathematical models and 

to speed up the model construction process. 

 

 Talluru & Deshmukh (2003) use domain-specific knowledge to estimate costs for customized products. 

The benefit is in a more efficient bidding process. Using the system, engineers are able to estimate costs in 35 

minutes for a bid that had required eight hours prior to implementation of the system. The system operates in a 

development environment, enabling engineers to manipulate requirements, and in a consulting environment, 

allowing sales personnel to prepare bids for jobs. The bidding process is carried out by the inference engine, 

consisting of a feature agent, steel cost agent, manufacturing cost agent and profit agent. Sales personnel work with 

the consulting environment to facilitate the bidding process. Feedback from both engineers and sales personnel 

following the initial testing phase is that is the system is useful, indicating it is both user-friendly and easy to update. 
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Some problems are encountered thereafter, however, due to programmer turnover and lack of documentation. 

Additionally, the authors determine that explanation facilities would make the system more acceptable to users. 

 

 Waldburger (2011) discusses DeRISC (Dispute rEsolution Recommender for International Service 

Contracts), a knowledge-driven DSS, providing support for international service contracts between service providers 

and their customers. The system provides Private International Law (PIL)-compliant recommendations for contract 

parties concerning jurisdiction and applicable law. The purpose is to provide improved risk assessment for both 

contract parties throughout the service life cycle. The DSS implementation provides the first completely machine-

executable implementation of Brussels I regulation. 

 

 Wright et al (2009) discuss decision support capabilities included in commercially-available electronic 

medical record and computerized provider order entry systems. Generally, the DSS capability is a trigger that warns 

a provider when he/she is about to make a potentially dangerous order. These situations would include orders for 

drugs that a patient is allergic to or orders for drugs that have a harmful interaction with an already-prescribed drug. 

The decision support capability is advisory, and the provider has the ability to ignore the warning message. The real-

world implications of these systems include reductions in the rate of adverse drug events. 

 

Model-driven DSS 

 

 In a model-driven DSS, the driving technology is one or more mathematical model(s). Examples of types 

of models such a system might be built around include simulation models or the optimization models found in 

mathematical programming. The earliest model-driven DSS of which we are aware is described in Keen & Morton 

(1978, pages 16-32). The system, which was initiated in 1966, supported production planning decisions for the 

laundry equipment division of a large American corporation. Before this system came into use, production planning 

took six days of effort spread over twenty elapsed days. Using the system, production planning took a half day 

spread over two elapsed days. It is clear the system allowed the planning process to take less effort and also to be 

more responsive. In addition, the system improved communications between marketing and production groups, 

allowed extended exploration of alternative production plans, and resulted in greater satisfaction with both the 

production planning process and with the resulting production plan. 

 

 Another classic example of a model-driven DSS is described in Seaberg & Seaberg (1973). Their system 

consists of a family of models used for planning and control at Xerox of Canada. The models are executed in 

collaboration between computer-based models and functional managers. The models speed up planning and allow 

consideration of a larger number of cases than would be possible without the DSS.  However, their models were not 

integrated, and output from one model would be manually input into the next. 

 

 Muhanna & Pick (1994) discuss techniques to integrate free-standing models with each other and with 

databases.  Their system is an approach to combine a series of simple models into a more-complex aggregate model.  

Their system allowed all data to be input only once and for output of a model to be subsequently used by another 

model.  The benefit is in a reduction in both the labor and elapsed time required to build a model. 

 

 Chang (2002) outlines an example of a model-driven DSS. The primary benefit of her system is that it 

assists in model formulation of a staff scheduling problem. Models are built and exercised more quickly than would 

be possible without the DSS. Alternatively, the DSS causes better staff scheduling decisions than if the decisions 

would be made without the benefit of the optimization model. Audit schedulers must incorporate not only audit 

deadlines, but the sequence of sets of interrelated tasks. Additionally, efficiency variance based on different 

expertise levels of auditors must be considered. The proposed DSS explicitly considers each of those with the 

overall purpose of minimizing engagement completion time and, therefore, engagement cost. A pair-wise exchange 

model is used to improve the model’s scheduling results. The author indicates the resulting method is especially 

suitable for large public accounting firms, and it is easy to use. 

 

 Xie (2010), based upon a European-Commission-funded project, discusses a model-driven DSS that 

integrates reliability analysis in the operation and service phases of a product’s life cycle. The three-part conceptual 

model presented in the study uses Isograph, reliability engineering software, and ARENA, a system modeling 
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package. Since ARENA is used primarily in supply chain management and manufacturing systems, incorporating its 

use in the DSS provides important linkage among the design, manufacturing, operation and service phases of the 

product life-cycle. Evaluating component and product reliability and maintenance through the life cycle, the model 

sees how new systems or features affect output.   

 

Graphics-driven DSS 

 

 Graphics-driven DSS are primarily driven by their ability to display data meaningfully to decision-

maker(s). A very early graphics-driven DSS was the “Geodata Analysis and Display System (GADS),” Keen & 

Morton (1978, pages 147-160), “GADS is an interactive graphics system that essentially draws maps.” GADS has 

been used to plan for urban growth, design police beats, and modify school boundaries. Much of the benefit of the 

system seems to arise from the value of graphics in presenting data meaningfully and thereby assisting the decision-

maker in visual interpretation and focusing attention on the overall situation rather than isolated details. 

 

 Without actually describing an individual DSS, Desai (2005) outlines the use of visualization tools to 

enable geologists, geophysicists, and engineers in the oil industry to better understand their data and thereby come to 

better decisions about oil exploration and production. Integrating field operations data with data processing, analysis 

and interpretation has become much more efficient with the use of visualization centers, introduced in the late-

1990s. These centers also allow members of multidisciplinary teams to work collaboratively, viewing data 

simultaneously. The authors identify a large curved screen with multiple high resolution projectors, large flat 

screens, and caves (“small rooms where 3-D images are projected from outside”) as the three primary 3-D 

visualization centers being used. 

  

 Tanerguclu et al (2012) discuss a graphics-based DSS that can be used in air defense to determine weapon 

and radar positions without having to travel to the locations being considered. The purpose of the system is to reduce 

the time required to select sites, using an optimization model incorporating needed theoretical assumptions and 

using reliable numerical data from a GIS. Additionally, the system is designed to be able to identify optimal 

deployment alternatives under changing conditions. The authors indicate that the spatial DSS can find an optimal 

solution to a more complicated problem in fewer than twenty minutes when visual analysis of a less complicated 

problem using a conventional paper map takes several hours on average. Moreover, without the use of a spatial DSS, 

it is often necessary to physically travel to the actual sites to check visibility of the point and feasibility of siting. 

Another benefit provided by the system is representation of results visually in addition to the solution reports. 

 

CONCLUSIONS 

 

 The purposes of this paper were to introduce to the reader a sense of the power that DSS technologies bring 

to the decision-making process and to make them aware of the range of possible benefits from adopting DSS. This 

was accomplished by first outlining the evaluation of DSS for the purpose of assessing systems’ benefits. After 

dividing the DSS literature into six parts according to the underlying driving technology, we then provided examples 

of DSSs from each area of the literature. In each area, we started with one of the very earliest systems of its type and 

then listed several more recent examples.  The examples also come from a wide range of application domains. For 

each example, we discussed the benefits of the DSS.  
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covering a similar topic with a similar title, the present paper has little in common with the 2008 paper. The present 

paper uses a different organizing framework, and nearly all of the cited example systems are new. 
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