
Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 99

Maintaining Database Integrity Using

Data Macros In Microsoft Access
Ali Reza Bahreman, Oakland University, USA

Mohammad Dadashzadeh, Oakland University, USA

ABSTRACT

The introduction of Data Macros in Microsoft Access 2010 addresses a major shortcoming of Access

in enforcing business rules associated with a database application. Specifically, data macros remove

the onerous “coordination” across data entry/update forms touching a base table in order to enforce

semantic integrity constraints. More importantly, similar to triggers in SQL, Access data macros

allow users to update tables by direct datasheet edits or explicit SQL update while enforcing that any

update violating an integrity constraint is rejected. This paper categorizes semantic integrity

constraints and presents the approach to implement each of the five categories in Microsoft Access

using data macros.

Keywords: Database Management Systems; Semantic Integrity Constraints; Validation Rules; SQL-99; Triggers;

Microsoft Access 2010; Data Macros

INTRODUCTION

emantic integrity constraints, also referred to as data validation rules, are a common occurrence in database

implementation scenarios. Consider the following database about departments and their employees:

DEPT(DNO, Name, City, ManagerID, PayrollBudget)

EMP(ENO, FullName, HireDate, ReviewDate, Salary, SSN, DeptID)

 Each of the following represents a sample business rule or semantic integrity constraint for this scenario.

Rule 1: No two departments will be assigned the same value for DNO (primary key integrity).

Rule 2: No two employees will be assigned the same value for ENO (primary key integrity).

Rule 3: Social Security Number (SSN) is either null (missing) or is unique; that is, no two employees will have the

same value for SSN.

Rule 4: ManagerID is either null or the same as an ENO value (referential integrity).

Rule 5: DeptID must be the same as a DNO value (referential integrity).

Rule 6: The only permissible values for City are: Boston, Chicago, and Detroit.

Rule 7: PayrollBudget for each department must be greater than or equal to the sum of salaries of employees assigned

to that department.

Rule 8: HireDate must be greater than or equal to September 1, 2012.

Rule 9: For each employee, ReviewDate is either null or greater than HireDate.

Rule 10: Valid salaries are between $10,000 and $90,000.

Rule 11: Department D10 employee salary cannot be less than $35,000.

Rule 12: Salaries should not be reduced.

Rule 13: For department D10 employees hired on the same date, the ReviewDate must be identical.

Rule 14: Each department manager must come from the same department.

S

Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

100 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

 To maintain our example database’s integrity, each of the above rules must be enforced. As pointed out by

Dadashzadeh (2007), there are four ways to accomplish this:

1. Let the users be responsible for it!

2. Do not let users update (i.e., add, delete, or modify) the database directly. Always write programs to handle data

entry and update and let the programs enforce the integrity constraints.

3. Let the users update the database directly, but write DBMS triggers that would be invoked automatically upon

updates to enforce the integrity constraints.

4. Declare the integrity constraints as DBMS assertions that would automatically be enforced by the DBMS.

 It is generally agreed that letting the users police themselves would be an unrealistic approach. On the other

hand, the most ideal approach is through DBMS assertions where the burden of enforcement is placed completely on the

DBMS itself. Unfortunately, current database management systems fall short of this ideal (Türker and Gertz, 2001) and

database developers must resort to some form of programming (approaches 2 and 3) to enforce integrity constraints.

 The concept of database assertions is not new (Date, 1990; Grefen and Apers, 1993). Indeed, database

assertions are supported in a limited basis by all current DBMS software (Dadashzadeh, 2007). Specifically, the ability to

designate the primary key of a table is nothing more than asserting a constraint and letting the DBMS enforce it during

database updates. On the other hand, an integrity constraint, such as Rule 7, could be specified in SQL-99 syntax as:

CREATE ASSERTION Rule7

CHECK Not Exists

(SELECT DNO

FROM DEPT INNER JOIN EMP ON DEPT.DNO = EMP.DEPTID

GROUP BY DNO, PayrollBudget

HAVING Sum(EMP.Salary) > PayrollBudget);

leaving its enforcement to the DBMS. Unfortunately, support for such arbitrary database assertions is not present in

today’s commercial software.

 In the absence of support for database assertions, an integrity constraint, such as Rule 7, can be enforced by

programming similar to:

If

Exists(SELECT DNO

 FROM DEPT INNER JOIN EMP ON DEPT.DNO = EMP.DEPTID

 GROUP BY DNO, PayrollBudget

 HAVING Sum(EMP.Salary) > PayrollBudget)

Then

 Alert(“Rule 7 has been violated!”)

 Abort

End If

 Of course, the preceding sample code needs to be executed whenever a new employee row is added or when

the Salary or DeptID fields are changed. When a DBMS supports the concept of triggers, code such as the above can be

written once and associated with the table EMP for automatic execution whenever certain events trigger (in this case,

when a row is inserted, or when rows – specifically Salary or DeptID - are changed). Importantly, the code will be

automatically triggered no matter how the update originates; that is, whether the user is explicitly executing an SQL

UPDATE statement or a program supporting a user data entry/update form is making the update implicitly. If a DBMS

does not support the concept of triggers (or something similar), as was the case with the popular Microsoft Access prior

to its 2010 release, then the code must be associated with each data entry/update form that could potentially insert a

new row in the EMP table or modify the Salary and/or DeptID fields. Furthermore, to ensure that Rule 7 is not

violated, the users should be prevented from explicitly issuing SQL INSERT and UPDATE statements against the

EMP table (Dadashzadeh, 2007).

Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 101

 Prior to its 2010 release, Microsoft Access provided mixed support for specification and enforcement of

semantic integrity constraints. It supported database assertions in a limited way, did not support triggers, but

provided the necessary methods for procedural support of enforcing integrity constraints. The introduction of data

macros in Access 2010 (Conrad and Viescas, 2010) has overcome its major shortcoming of not supporting trigger-

like features for maintaining database integrity. In this paper, we review a classification of semantic integrity

constraints and present the approach to implement each of the five categories in Microsoft Access using data macros.

A CLASSIFICATION OF SEMANTIC INTEGRITY CONSTRAINTS

 A useful categorization of database integrity constraints is presented by Dadashzadeh (2007). Semantic

integrity constraints are either static or dynamic. Static integrity constraints are those that can be determined to have been

violated or not by a transaction by simply examining the database state when the transaction commits its changes. For

example, consider a database transaction change of an employee’s salary to:

EMP

ENO Full Name Hire Date Review Date Salary SSN DEPTID

E1 Emily Smith 9/1/2005 $86,000.00 123-45-6789 D10

 Rules 10 and 11 can be immediately verified to have not been violated by merely considering this proposed

database state. Specifically, salary is within permissible range of $10,000 to $90,000 and as a department D10 employee,

the salary is indeed not less than $35,000. However, it is impossible to verify that the transaction has not violated Rule 12

by merely examining the proposed database state. A dynamic integrity constraint, such as Rule 12, can only be verified

by examining both the proposed database state as well as the starting database state. So, if the prior state is:

EMP

ENO Full Name Hire Date Review Date Salary SSN DEPTID

E1 Emily Smith 9/1/2005 $87,500.00 123-45-6789 D10

then Rule 12 is seen as being violated since the salary value of $87,500 is being reduced to $86,000.

 Static integrity constraints can be classified into four categories:

1. Domain-Type constraints limit permissible values for a data field (column). A domain-type constraint can be

determined to have been violated or not by simply examining the value of a single field in the record being

added/changed. For example, valid salaries are between $10,000 and $90,000 (Rule 10).

2. Tuple-Type constraints limit permissible values for a data field based on values in other data fields in the same

record. A tuple-type constraint can be determined to have been violated or not by examining the values of

multiple fields in the record being added/changed. For example, department D10 employee salary cannot be

less than $35,000 (Rule 11).

3. Relation-Type constraints limit permissible values for a data field based on values in other records in the same

table. A relation-type constraint can be determined to have been violated or not by examining the values in

other records in the table being added/changed. The quintessential relation type constraint is the primary key

integrity rule that limits the permissible value in the key field of a record being inserted/changed by the

existence of the same value in other records in the table.

4. Database-Type constraints limit permissible values for a data field based on values in other records in other

tables in the database. A database type constraint can be determined to have been violated or not by examining

the values in other records in other tables. The quintessential database-type constraint is the referential integrity

rule that limits the permissible value in the foreign key field of a record being inserted/changed by the existence

of the same value in the primary key field of another table in the database.

Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

102 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

 Table 1 classifies each of the 14 rules in our example database scenario and the next section presents the

manner by which each type can be enforced in Microsoft Access using data macros.

Table 1: Classification of Rules 1-14

Rule#

Static

Dynamic Domain-Type Tuple-Type Relationship-Type Database-Type

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

SEMANTIC INTEGRITY CONSTRAINTS IN MICROSOFT ACCESS

 Microsoft Access provides mixed support for specification and enforcement of semantic integrity

constraints. Domain-type constraints are handled easily through assertions as validation rules. Tuple-type constraints

in Microsoft Access are also handled by assertions. However, all tuple-type constraints must be combined in a single

validation rule specified as a table property. To assert Rules 9 and 10, the following combined validation rule must be

specified:

(([ReviewDate] Is Null) Or ([ReviewDate]>[HireDate])) And (([DEPTID]<>"D10") Or (([DEPTID]="D10") And

([Salary]>35000)))

 The primary key relation-type integrity constraint is easily handled in Microsoft Access by designating the

primary key column(s). Closely related relation-type integrity constraints arising from candidate keys (such as Social

Security Number (SSN) column in our sample EMP table) are handled by requiring indexing with no duplicates allowed

for the specific column in table design view. Or, a unique index on multiple columns may be specified in Access using

an SQL statement, such as CREATE UNIQUE INDEX idx1ON EMP(SSN, HireDate).

 Other kinds of relation type integrity constraints, such as Rule 13 (i.e., for department D10 employees hired on

the same date, the ReviewDate must be identical), must be programmed in Microsoft Access. The basic approach is to

create logic that runs before a record is saved to validate changes and then decide to allow the new values or show an

error to stop the changes. The Before Change data macro associated with our EMP table is where the logic to enforce

Rule 13 must be encoded to handle each of the following triggering updates that may violate Rule 13:

 A new EMP record is being inserted

 An existing EMP record’s HireDate, ReviewDate, or DeptID field is being updated

 This can be accomplished in the Before Change data macro for EMP table using an If program flow conditional

block, a LookupRecord data block, and a RaiseError data action as follows:

If ([EMP].[DEPTID]="D10") And

 ([IsInsert] Or Updated(“HireDate”) Or Updated(“ReviewDate”) Or Updated(“DEPTID”))

Then

 Look Up A Record

 In EMP Alias E

Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 103

 Where [E].[DEPTID]="D10" And

 [E].[HireDate]=[EMP].[HireDate] And [E].[ReviewDate]<>[EMP].[ReviewDate]

 RaiseError (13, “Rule 13 will be violated in EMP.”)

End If

 The [IsInsert] property would be true if the Before Change event is triggered by an attempt to insert a row into

the table. The Updated("Field Name") function returns true if the data field has changed. The Look Up A Record is used

to find a record that would violate the integrity constraint (i.e., Rule 13) if the newly inserted or updated row is

committed to the table. In this case, the table EMP with alias E is used to locate an employee record in department D10

hired on the same date as the newly inserted or updated record but having a different review date. If at least one such

record is found, the next statement will be executed; otherwise, the LookupRecord data block is completed. Therefore,

the RaiseError data action will only be executed if a match is found indicating a violation of Rule 13 and the data macro

is stopped allowing the user to take corrective action or to undo the insert/update.

 The referential integrity database type constraints are easily handled in Microsoft Access using the relationship

screen where the cascade delete and cascade update triggering actions can also be specified as shown in Figure 1 for

Rule 4.

Figure 1: Using Relationships to Assert Referential Integrity Database Type Constraints

 Other kinds of database-type integrity constraints must, however, be handled through data macro(s) in

Microsoft Access. Rule 7 (i.e., PayrollBudget for each department must be greater than or equal to the sum of salaries of

employees assigned to that department), for example, is enforced by first identifying the insert/update/delete actions that

can trigger its violation:

 A new EMP record is being inserted

 An existing EMP record’s Salary or DeptID field is being updated

 An existing DEPT record’s PayrollBudget field is being updated

Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

104 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

 This is accomplished in the Before Change data macro for EMP table and in the Before Change data macro for

DEPT table using an auxiliary view named ViewDepartmentSalaryTotal and defined as follows:

CREATE VIEW ViewDepartmentSalaryTotal AS

SELECT DeptID, Sum(Salary) AS [Total Salary]

FROM EMP

GROUP BY DeptID;

 Then, in DEPT table data macro, we define the following condition block which appears in Access as shown in

Figure2.

If Updated(“PayrollBudget”)

Then

 Look Up A Record

 In ViewDepartmentSalaryTotal Alias V

 Where [V].[DeptID]=[DEPT].[DNO] And

 [V].[Total Salary] > [DEPT].[PayrollBudget]

 RaiseError (7, “Rule 7 will be violated in DEPT.”)

End If

Figure 2: Before Change Data Macro for DEPT Table

 And, in EMP table data macro, we take advantage of the SetLocalVar data action to maintain a local variable

needed for a subsequent LookupRecord and accessing the previous value in a field being updated by using [Old].[Field

Name] syntax:

If Updated(“Salary”)

Then

 SetLocalVar (TotalDepartmentSalary, 0)

 Look Up A Record

 In ViewDepartmentSalaryTotal Alias V

 Where [V].[DeptID]=[EMP].[DEPTID]

 SetLocalVar (TotalDepartmentSalary, [V].[Total Salary])

Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 105

 Look Up A Record

 In DEPT Alias D

 Where [D].[DNO]=[EMP].[DeptID] And

 [D].[PayrollBudget] < ([TotalDepartmentSalary]+[EMP].[Salary]-[Old].[Salary])

 RaiseError (7, “Rule 7 will be violated in EMP due to salary change.”)

End If

If Updated(“DEPTID”) Or [IsInsert]

Then

 SetLocalVar (TotalDepartmentSalary, 0)

 Look Up A Record

 In ViewDepartmentSalaryTotal Alias V

 Where [V].[DeptID]=[EMP].[DEPTID]

 SetLocalVar (TotalDepartmentSalary, [V].[Total Salary])

 Look Up A Record

 In DEPT Alias D

 Where [D].[DNO]=[EMP].[DeptID] And

 [D].[PayrollBudget] < ([TotalDepartmentSalary]+[EMP].[Salary])

 RaiseError (7, “Rule 7 will be violated in EMP due to department change or insert.”)

End If

 Finally, Microsoft Access readily supports enforcing dynamic integrity constraints through data macros by

making available the previous value in a data field being updated by using [Old].[Field Name] syntax. As such, dynamic

constraints, such as Rule 12, can be enforced as shown in Figure 3 as a part of the Before Change data macro for the

table:

If Updated("Salary") And [Old].[Salary]>[EMP].[Salary]

Then

 RaiseError (12, “Rule 12 will be violated in EMP. Salaries should not be reduced!”)

End If

Figure 3: Raise Error Data Action

 As demonstrated in this section and the Appendix, all types of semantic integrity constraints can be specified

and enforced in Microsoft Access using data macros. For domain-type and tuple-type integrity constraints, Access

supports a declarative approach to specification and provides for automatic enforcement. For relation-type and data-type

constraints, other than primary key integrity and referential integrity rules, Access leaves both the specification, as well

as the enforcement, to program logic in data macros. Notwithstanding performance considerations, it seems most

appropriate that all integrity constraints be specified and enforced as part of data macros for each base table in the

database.

CONCLUSIONS

 At all times, a good database must reflect the real world it is designed to represent. Semantic integrity

constraints are logical assertions about the valid states of a database. The importance of the specification and

enforcement of semantic integrity constraints has been recognized since the advent of the relational data model. Early

Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

106 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

papers (Eswaran and Chamberlin, 1975; Hammer and McLeod, 1975) proposed the implementation of constraint

checking as an integral subsystem in DBMS software. Unfortunately, however, commercial software adoption of those

ideas has been lagging far behind (Dadashzadeh, 2007).

 Support for declarative semantic integrity constraints (i.e., database assertions) in DBMS software ranging from

DB2, Oracle, SQL Server to Microsoft Access remains limited to primary key integrity, referential integrity, and what

has been characterized in this paper as domain-type and tuple-type static constraints. The more complex relation-type,

database-type, and dynamic constraints must be enforced using procedural definition of integrity constraints by triggers.

The introduction of data macros in Access 2010 has finally brought trigger-like functionality to Microsoft Access. In this

paper, we presented how all types of semantic integrity constraints can be specified and enforced in Microsoft Access

using data macros – paving the way to a more streamlined approach to marinating database integrity.

AUTHOR INFORMATION

Ali Reza Bahreman earned his Master of Science in Information Networking from Carnegie Mellon University in

1992. His thesis research in Certified Electronic Mail led to project leadership assignments at Bellcore and Verifone

in secure platforms for electronic commerce and a US Patent in 2000. Bahreman returned to Michigan to earn his

Master of Science in IT Management focusing in Business Analytics at Oakland University in 2013. E-mail:

abahrema@oakland.edu

Mohammad Dadashzadeh serves as Professor of MIS and Chair of Department of Decision and Information

Sciences and the coordinator of the 1-year, half on-line program leading to a Master of Science in IT Management

focusing in Business Analytics from Oakland University. He has authored 4 books and more than 50 articles on

information systems and has served as the editor-in-chief of Journal of Database Management. E-mail:

dadashza@oakland.edu

REFERENCES

1. Conrad, J. and Viescas, J. (2010) Microsoft Access 2010 Inside Out, Microsoft Press, Sebastopol, CA.

2. Dadashzadeh, M. (2007) “Specification and Enforcement of Semantic Integrity Constraints in Microsoft

Access.” Journal of Information Systems Education, Vol. 18, No. 4, pp. 393-398.

3. Date, C.J. (1990) “A Contribution to the Study of Database Integrity.” In Relational Database Writings 1985-

1989, Edited by C.J. Date. Addison-Wesley, Reading, MA.

4. Eswaran, K.P. and Chamberlin, D.D. (1975) “Functional Specifications of a Subsystem for Data Base

Integrity.” In Proceedings of the 1st International Conference on Very Large Data Bases (VLDB ’75), Edited

by D.S. Kerr. Morgan Kaufmann Publishers, Los Altos, CA.

5. Grefen, P.W.P.J. and Apers, P.M.G. (1993) “Integrity Control in Relational Database Systems–An Overview,”

Data & Knowledge Engineering, 10(2), pp. 187-223.

6. Hammer, M.M. and McLeod, D.J. (1975) “Semantic Integrity in a Relational Data Base System.” In

Proceedings of the 1st International Conference on Very Large Data Bases (VLDB ’75), Edited by D.S. Kerr.

Morgan Kaufmann Publishers, Los Altos, CA.

7. Türker, C. and Gertz, M. (2001) “Semantic Integrity Support in SQL-99 and Commercial (Object-) Relational

Database Management Systems,” VLDB Journal, 10(4), pp. 241-269.

mailto:abahrema@oakland.edu
mailto:dadashza@oakland.edu

Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

2013 The Clute Institute Copyright by author(s) Creative Commons License CC-BY 107

APPENDIX

Using Data Macros to Enforce Rules 1-14

 While domain and tuple-type constraints as well as primary key (a relation type constraint) and referential

integrity (a database type constraint) can be declaratively asserted and enforced by Access, for completeness, we show

the implementation of all 14 example constraints using data macros in a supplementary paper available from the authors.

 In general, when considering where and when to include the programming logic for verifying integrity

constraints, it is helpful to create a table that documents triggering conditions for each rule; that is, which update

operation(s) (Insert, Delete, or Update) and which field(s) could trigger the potential violation of a business rule. Table 2

provides that information for rules 1-14.

Table 2: Triggering Update Operations (Insert, Delete, or Update) and Data Fields for Rules 1-14

Rule# Field EMP DEPT

Before Change Before Delete Before Change Before Delete

1 DNO I,U

2 ENO I,U

3 SSN I,U

4 ManagerID I,U

5 DeptID I,U

DNO U D

6 City I,U

7 PayrollBudget U

Salary I,U

DeptID U

8 HireDate I,U

9 ReviewDate I,U

HireDate I,U

10 Salary I,U

11 Salary I,U

DeptID I,U

12 Salary U

13 DeptID I,U

HireDate U

ReviewDate U

14 ManagerID I,U D

DeptID U

ENO D

Review of Business Information Systems – Third Quarter 2013 Volume 17, Number 3

108 Copyright by author(s) Creative Commons License CC-BY 2013 The Clute Institute

NOTES

