
Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

9

Contemporary Capstone Computer Courses:

Lessons From The Service Sciences
M. Keith Wright, PhD, CISA, PMP, University of Houston – Downtown, USA

Charles J. Capps III, DBA, SPHR, Sam Houston State University, USA

ABSTRACT

Enrollment in computer programming courses has plummeted in the past decade. Facing a

similar situation in the 1960s, the mathematics community responded by inventing the “new

math.” Unfortunately the new math failed because it was too abstract for students to see

connections with their lives, and because math teachers were not adequately prepared. Many of

today’s computing related degree programs are in danger of failing for similar reasons. This

paper argues that, besides off-shoring; there may be other less obvious reasons for the drop in

enrollment. These reasons include curriculums that overemphasize functional programming, and

under-emphasize ethics and practical service internships. This paper further argues that modern

curriculums for the fields of Computer Science, Information Systems, Information Technology,

and Software Engineering could all be improved by viewing them as sub-specialties of the newly

emerging discipline of Service Sciences. The paper concludes by sketching a basic curriculum for

a hypothetical new program we call the School of Artificial Systems and Service Sciences. It is an

extension of the philosophical approach used at Yale Medical School.

Keywords: programming curriculum, computer science, information systems, service sciences

INTRODUCTION

hen Edsger Dijkstra wrote his seminal paper on programming, programmers were lost in millions of

lines of spaghetti code [3]. Dijkstra showed the way out. Now programmers have lost their way

again -- this time amidst thousands of unread resumes. As a result, in 1998 the percentage of all

freshmen planning a major in computer science was only 1.4%. Between 2000 and 2004, the percentage of

incoming computer science freshmen fell by 60%. Drop rates of 30-50% were common. Results are similar for the

other computing related fields including Information Systems, Software Engineering, and Information Technology

[6, 17]. In the preface of his book "Pre-calculus Mathematics in a Nutshell," Professor George F. Simmons wrote

that the “New Math” of the 1960s failed because it produced students who had "heard of the commutative law, but

did not know the multiplication table” [4]. A similar situation now exists for the computing related disciplines that

Herbert A. Simon referred to collectively as the “Sciences of the Artificial” [16].

This loss of student interest in Simon‟s sciences of the artificial has been blamed on various factors

including media portrayals of computing as relatively unglamorous, and an impression that computing requires

extraordinary programming skills. Computing journals perpetuate these notions. For example, Martin [8] argues

that in capstone computer science courses students working individually should design and code a „real world‟

application. Martin cites his experience of writing code for his small business. In contrast, we believe strongly that

to emphasize programming, real or imaginary, via a capstone course is, in this day and age, to waste the precious

limited time professors have with their students. Accordingly this paper focuses on other ideas to improve curricula

for the artificial service sciences.

This article is organized as follows. First, the paper presents personal experiences of one of the authors as a

professional code writer for several Fortune 500 companies, including IBM, from 1975 to 2000. This experience

suggests that programming skills have been but a small part of what students have needed historically. Next,

evidence from current economic literature is cited reminding the reader that professional code writing is no longer

W

http://en.wikipedia.org/wiki/Commutative_law
http://en.wikipedia.org/wiki/Multiplication_table

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

10

the high paying career it once was. Finally, borrowing from Herbert Simon, the Yale Medical School curriculum,

and the Information Technology Infrastructure Library (ITIL) ideas are presented on how to redesign computing

curriculums to better address modern economic and organizational needs.

WHAT IS “PROFESSIONAL” PROGRAMMING?

Before rejoining academia, the primary author, Dr. M. Keith Wright, spent over twenty years as a

professional programmer and his experiences reflect many trends from the era. Originally drawn to the field by a

college level love for programming, he began his first programming job in 1974. In those days, computers and

compilers were unavailable to all except academics, business owners and their employees. The principal entry level

requirement for professional programming was a technical college degree that included a couple of programming

courses (Assembly, and either FORTRAN or COBOL). The essential qualities employers wanted were analytical

ability, intellectual curiosity, and loyalty. Programming was a rare skill and programmers were in short supply. The

primary author‟s first job was in Houston, Texas, at a startup company with a government contract to digitize

highways and power lines, the beginnings of technology found today in Google Earth and Yahoo maps.

Computer centers in those days were populated with machines such as IBM 360s, Burroughs 3700s, and

UNIVAC 1100s. Using these machines were some of the best recent college graduates, old time COBOL and

FORTRAN programmers, and part time academics. Wright was part of a fifteen person programmer team assigned

to write code for map plotter drivers from scratch. He was doing design and using analytical geometry techniques

learned in college. “I was making good money. I was perceived as a first-rate programmer. I was in programmer

heaven!”

Unfortunately, the heavenly period lasted only about a year. Then he learned his first and hardest

professional programming lesson: professional code writing is primarily re-writing. Sadly, beginning in the second

year, Wright began re-writing his code the first of what seemed an endless number of times -- each re-write

conforming to a different deployment environment. He had to re-write the code of many of his former team mates

who had moved on to higher paying jobs. Thus, for the first time in his career, Wright was faced with a huge dose

of what Fred Brooks first described as accidental complexity [2].
1

Because of the short supply of skilled professionals, programmers seldom stayed at a job more than a year

or so. The lure of extra money was compelling. Wright soon changed jobs and learned another hard lesson: small

programming teams are better than big teams. He sub-contracted with a Silicon Valley firm called Informatics and

became part of a one hundred person team developing a shop-floor control system for the United Airlines

maintenance operations center in San Bruno, California. The project was the beginning of current supply-chain

technology. What Wright did not understand was that he made a mistake by asking to be a programmer on the team.

It seemed programmers were restricted to duties such as implementing CICS (green) screens.
2
 Alas, most of what

he considered to be the interesting project tasks were, he was told, to be done by the systems analysts. These tasks

included database design, the module decomposition, and coupling strategy.

Further exacerbating his boredom, Wright was told systems analysts had not yet completed their work.

This meant there was nothing ready to program, and that nevertheless, he was to “look busy.” It seemed that a

mistake in the project‟s plan allowed programmers to be hired about three months before they were needed,

resulting in thousands of suspect man-hours billed to United Air Lines.

After a few weeks Wright could not face another day of trying to “look busy” and began seeking another

opportunity. He thought perhaps his next job should be as a systems analyst and went to work for a Virginia based

company, Information Engineering Systems Corporation. There he was part of a team doing data modeling for a

supply chain project for Meijer department stores data center in Grand Rapids, Michigan.
3
 That job was fine, except

Wright noticed the only consumers of the data models were the data modelers. The intended consumers, the

1 A change in processor control, during expression evaluation.
2 Customer Information Control System. IBM http://en.wikipedia.org/wiki/CICS
3 http://www.meijer.com

http://www.meijer.com/

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

11

programmers, were employed by a different sub-contractor, Keane.
4
 It seemed a mistake in the service level

agreement allowed the programmers to proceed before the data models could be developed. This bothered him and

he moved on to his next job.

Wright became a programmer again, this time with Levi Strauss in San Francisco working with operations

research specialists coding an interesting CAD-CAM optimization algorithm to build blue jeans with the least

amount of fabric -- using an early just-in-time inventory system, doing design, and using clever mathematical tricks.

Once again he was in heaven until the day (two years later) when Levi Strauss off-shored their entire supply chain

service.

Wright‟s quest for interesting and honest computing work continued for the next decade, taking him back

to academia, the Texas Workers Compensation Commission, National Semiconductor, Advanced Micro Devices,

and finally IBM in 1998. By the time Dr. Wright joined IBM, he was equipped with a University of Texas PhD in

Information Systems. He volunteered for a small Java programming team working on an interesting insurance fraud

detection data mining application against the advice of almost all his new IBM colleagues who viewed programming

as demeaning work.

Once again he was in programmer heaven. Wright was working with J2EE and learning web technologies

for the first time, learning what an application server was, and what a web-application was. Regrettably that team

was one of the last to ever develop an end-user application at IBM. Today all IBM software products are huge

middleware applications with millions of lines of code developed in teams distributed across the globe among many

subsidiary companies and hundreds of programmers. In 2000, he began a job on one of the IBM WebSphere

development teams. By then IBM programmers were known as „developers.‟ At IBM developers are more

“technology wizards” than programmers. One had to be a technology wizard to set up a programming workstation.

These tedious tasks involved installing a large stack of software, including the J2EE, the Apache web server, the

WebSphere Application Server, DB2, WebSphere Portal Server, and Tivoli Access Manager. This stack of (usually

immature) software releases contained many intricate version dependencies which changed about once a month.

Learning the version dependencies required expert skill in surfing the IBM internal support websites.

There were few support people for the developers. Many of the UNIX, NT, and WebSphere administrators

had been „out-placed‟ during the last few annual lay-offs, known internally as the annual “rank and yank” process.

As a result, most of the IBM developers did almost no programming at all. They spent their time installing software

or testing prerequisite software. However, programming was necessary to display simple looking web pages that

interfaced with WebSphere Portal Server. Coding these web pages was anything but simple. It required expert

skills in debugging in an n-tier environment. This meant a thorough understanding of J2EE, security, XML, and

WebSphere. This was nothing like the functional programming one learned in college. It was pure side-effect

programming complete with another overwhelming dose of accidental complexity [2, 7]. Because of the lack of

technology support; this kind of work was at best extremely frustrating and at worst impossible. The gratification of

design, the steady progress towards results, and the thrill of gaining ultimate control over technology was now

completely absent. Instead, one faced non-deterministic diagnostic work in the extreme and because the overall

result depended on hundreds of other developers, it was work which gave any individual little control over the final

work product. Wright still believes the design of the jobs was very poor [12]. To make matters worse, technical

project direction at IBM was usually under the control of non-technical first-line managers. Often these managers

were twenty-somethings fresh out of Ivy League MBA programs who lacked a detailed understanding of the

technologies involved. These young MBA types relied heavily on technical specialists at IBM called „architects.‟

The architects, few in number, were the IBM technology veterans with at least ten years at IBM; these

people were seemingly unbothered by the slow pace of development, the long hours, and the fact the work had

almost nothing to do with writing code. The developers depended on these architects to dispense the correct

workstation images, the correct test data, the correct method signatures, and the correct build paths. Architects had

power and they did not always part with it willingly. Some of the preferred methods of retaining power included

dispensing incorrect or incomplete documentation, working off hours to avoid knowledge sharing, and resisting

4 http://www.keane.com

http://www.keane.com/

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

12

management efforts to expand the team. After all, it had taken years of heads-down behavior to get to their position

as architects, along the way many of their comrades perished in the lay-offs. The architects had learned well the

hardest programming lesson that programmers who are dispensable, will be eventually dispensed with.

Consequently, IBM architects continued to survive by doing what they had to do to become indispensable; they

became experts in UNIX, Linux, DB2, Windows, and WebSphere Portal administration. Architects were highly

sought after and highly paid. Regardless, they had little occasion to apply skills learned in school such as correct

module decomposition, inheritance lattice construction, list processing, functional programming, etc. In summary,

despite the fact Wright loved programming, was good at it, and sought it at every turn his observations pursuing an

IT career revealed professional programmers did little programming, and that was before the career was

substantially off-shored.

According to the McKinsey Global Institute [11], “a software developer who costs $60 an hour in the U.S.

costs only $6 an hour in India.” As a result, IBM launched a $200 million development center to handle the bulk of

solutions development work for IBM worldwide in 2004 [10]. IBM now has 15% of its global work force in India,

or 53,000 of its 356,000 employees. Today the company employs only about 150,000 workers in the United States

[5].

Since the mid-1990s a growing array of processes and services formerly conducted in the United States

including code writing, software design, and data processing have been outsourced to providers in low wage

countries. U.S. imports of business, professional, and technical services associated with off-shore outsourcing rose

from $21.2 billion in 1997 to approximately $37.5 billion in 2002, an increase of 77 percent. The most widely cited

estimate of the scale of white-collar off-shore outsourcing is a 2002 Forrester projection that “over the next 15 years,

3.3 million U.S. services industry jobs and $136 billion in wages will move off-shore” [9].

For the IT industry off-shoring is no longer simply an experiment with alternative service delivery; it has

become an established business practice. There is little doubt the growth of off-shore outsourcing has negatively

affected both job availability and wages in the job market which compounds the difficulties faced by unemployed IT

workers in what has been a prolonged downturn [17]. According to a recent report released by the Brookings

Institution, one of every five programming and software engineering jobs in Silicon Valley will be lost to off-

shoring over the next decade.
5
 The high salaries in Silicon Valley are cited as a major reason. The study predicted

that about 3.4 million of the U.S. jobs will be off-shored to other low cost destinations, such as India and China,

between 2000 and 2015. The Brookings Institution also reports about 20 percent of the existing U.S. IT jobs will be

lost to such low cost destinations by 2015. This study revealed about 60,000 well paying jobs will be off-shored

between 2004 and 2015. Many jobs could disappear from specific metropolitan areas. San Jose is expected to lose

24% to 26% of the programming and software engineering jobs that existed in 2004. This area is forecast to lose

almost 43% of the 52,510 jobs that existed three years ago. Other top vulnerable metro areas are San Francisco, CA,

Boulder, CO, Lowell, MA, Stamford, CT, and Dallas, TX. In Dallas about 49,000 to 57,000 jobs will be lost to

other countries over the next eleven years. Research predicts the average rate of job loss in the United States due to

off-shoring will be unusually high in Connecticut, Massachusetts, New Jersey, Colorado, Texas, and California [17].

Besides off-shoring, the IT industry still suffers from the 2001 recession as well as the ensuing jobless

recovery [17]. Between March 2001 and November 2001 the IT industry shed 197,000 jobs, or 9.2 percent of

employment. Further the industry fared no better during the recovery. By March 2002 (one year after the start of

the recession) IT industry employment had declined by more than 270,000 jobs. Significant losses continued such

that by March 2003, industry employment had fallen by an additional 113,000 jobs. Although the industry still

suffered a decline of 19,700 jobs, employment losses finally slowed by March 2004. All told these mounting losses

meant the industry lost about 402,800 jobs between March 2001 and March 2004. Of these lost jobs 205,000 (over

50 percent) were lost during the economic recovery [17].

Astonishingly, industry leaders and economic policy makers repeatedly proclaimed the future of the

American workforce is in information technology and knowledge-based jobs working as what Robert Reich termed

“symbolic analysts” [15]. Supporting these claims are signs, since March of 2004, of a weak resurgence in the IT

5 www.brook.edu/metro/pubs/20070131_offshoring.htm

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

13

industry. The total number of available positions increased almost 50% since April 2002 if Monster.com is a

reasonable indicator [17]. The U.S. Bureau of Labor Statistics forecasts a 20%–50% job growth in all computing

specialties by 2012, except for computer operations which is declining and programming which is flat [9]. It is

widely reported that finding people to fill the growing number of IT jobs will soon be more difficult than ever. But

as we have seen, evidence suggests the vast majority of the U.S. jobs will not be programming oriented and not

highly paid. And if something like Senate Bill S.B. 1348: The Comprehensive Immigration Reform Act of 2007 is

passed then the permitted number of H1B visas would more than double and further depress wages for American

programmers.
6

The web has radically changed the demand for programming skills [13]. Web programming which is

mainly side-effect programming jumped into a commanding lead in the total number of jobs requiring programming

skills and is now mentioned in an impressive 42.6% of programming job ads. Web programming, UNIX, SQL

programming, and Oracle database seem to be in the top six skills in the current job market. Each of these skills is

demanded in at least 20% of advertised IT jobs. Web programming comprises a complex set of non-functional

programming skills including scripting languages and meta-languages such as XML. The demand for UNIX, Linux,

and Windows skills seems to be holding steady. Over half of the 2005 job advertisements listed skills in one of

these three operating systems as necessary or desirable. Demand for database, ERP (such as SAP, Oracle, and

PeopleSoft), and e-commerce servers skills (such as WebSphere and WebLogic) are on the rise [13].

COMPUTING CURRICULUMS IN THE FUTURE

Based on experience it would be unwise to design future computing related curriculums solely on the above

employment figures. As you know, the arbitrariness of the evolution of computing standards permits demand for

some skills to persist while that for others die quickly. When designing curricula it is often beneficial to use retro-

thinking and consider first the characteristics of the capstone courses.

Many capstone courses involve locating real world programming projects in the community [8]. However,

this often consumes too much time as professors teach their students during limited semesters. Teachers trudging

about town looking for programming projects waste time. Further, real projects are usually well beyond the grasp of

most new graduates. We probably do students a tremendous disservice by giving them the impression they are

likely to make a living as a professional software writer. It is true there will be those gifted individuals who do

make a living as a programmer, but today it is more unlikely. Other capstone computing courses have students

working individually on long imaginary projects developed from scratch that gives them a chance to do their own

design and build something they feel they own. Unfortunately, this may give students a poor understanding of the

real world. The real world is not about working alone. It is about serving others. If students finish the course

thinking, “I built something for me; I can profit that way,” then academics have probably failed.

In brief, to survive in modern times, many computing related degree programs need a complete make over.

The Association for Computing Machinery (ACM) education board‟s Great Principles of Computing Project seeks

to portray the field in terms of its fundamental principles and core practices. Programming is only one of four core

practices. The other three are: systems thinking, modeling, and innovating. The authors believe deemphasizing

programming and giving systems thinking a more prominent role in computing curricula would go a long way

toward improving its effectiveness and appeal. (For an excellent discussion of creative ideas for adding innovation

to Computer Science curricula we suggest [4].)

Herbert A. Simon is perhaps the most well-known proponent of systems thinking in the computing

sciences.
7

6 http://www.washingtonwatch.com/bills/show/110_SN_1348.html.
7 Simon characterized Artificial Science (as opposed to natural science) as those phenomena whose behavior is contingent upon

the purpose of the designers.

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

14

…(computers) can be studied in the abstract, namely using mathematics. Yet, they can and must also be

studied empirically….the behavior of computers will turn out to be governed by simple laws, the apparent

complexity resulting from that of the environment they are trying to adapt to [16].

Historically, computing curricula have not emphasized the empirical study of these artificial systems. A new field

called “Service Sciences” is emerging in academia in which the empirical study of artificial systems will play an

undeniable part.

Service Sciences

Service sciences is emerging because the economies of the major industrialized nations are now more than

75% services based. As a result service sciences have been mentioned in recent articles in the Financial Times,

Business Week, Harvard Business Review, Technology Review, and The New York Times [14]. Service sciences

apply insights from computer science, operations research, engineering, management, social, cognitive, and legal

science to analyze how to align people and technology (socio-technical systems) in a more productive way to

generate value for both service providers and clients. You cannot discuss services without considering people and

ethics both in terms of building lasting relationships and in understanding the dynamics of the socio-technical

interface between the provider, client, and the technological processes.

At IBM services are said to have the following unique properties:

 all economic activity whose output is not a physical construct,

 an activity provided as a solution to customer problems,

 a change in state of an economic entity caused by another,

 intangible and perishable,

 created and used simultaneously,

 co-produced by the customer and the provider,

 a time-perishable experience, and

 highly customized.

Thus, a service is a provider/client interaction that creates and adds value. For instance, in a typical doctor/patient

interaction both sides benefit from the transaction and it is referred to as "capturing value." The doctor receives a

fee, the patient gets a health assessment, and (it is hoped) recovers from the illness. This basic principle also

underlies the interaction between any service provider and consumer. The provider and client synergistically

coordinate their work (co-production) and in the process both create and capture value. Services typically require an

assessment during which the provider and client come to understand one another's goals and capabilities. In the case

of the doctor/patient interaction, the patient checks to see if the doctor is licensed and/or accredited and if he or she

has the right specialty for the given illness. The doctor also conducts an assessment to determine the patient's

current ailment, medical history, and to verify payment details. All these steps factor into both sides capturing value

from the service. Obviously for IT and business services these assessments can be far more complex, but the

processes and measurements are very similar. Often if the client of a service does not train the necessary service

people in a reengineered process for example, the client will not receive the best benefits of the service. The

provider in many cases must monitor and assess the way the client is performing their duties and responsibilities.

Also, the client needs to determine that the provider is likewise applying satisfactory effort and quality controls in

the performance of their tasks. These issues become more important when outsourcing, especially when the client

outsources a component of its IT business to a provider that is in a different country with different government

regulations and national cultures.

Service sciences have had a low priority in academe until recently. However, we believe the empirical

study of artificial systems will become an increasingly important part of what is considered to be service sciences

and a primary paradigm by which future computing related curriculum are designed. For example in 2004, IBM

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

15

Research published the white paper "Services Science: A New Academic Discipline?"
8
 Presently IBM Research is

working with Arizona State, Carnegie Mellon, and Penn State universities on joint research projects. In 2006, North

Carolina State University became the first American research university to offer new master's-level curricula in

Service Sciences in its Colleges of Engineering and Management [1].

PROPOSED ARTIFICIAL SYSTEMS AND SERVICE SCIENCES PROGRAM

Surveys of high school students reveal they are well aware of the diminishing career prospects in

computing related disciplines. Research shows students find other technical fields such as bioinformatics and

molecular biology more attractive [6]. So why not look to the medical school curriculums for some guidance for

designing curricula for an Artificial Systems and Service Sciences degree program?

For example, at Yale Medical School the first year consists of basic sciences in normal body structure,

functions, growth, and development. In the second year more emphasis is placed on disease and its treatment

including pathology, pharmacology, microbiology, immunology, and how to take a medical history. During the

third year students receive clinical training by rotating through various hospitals and ambulatory services. All

students participate in the following seven clerkships:

1. Internal Medicine - This deals with non-surgical treatment of diseases in adults, especially of internal

organs.

2. Surgery

3. Pediatrics – Deals with the medical care of people 0-21 years.

4. Neurology

5. Family Practice - Deals with treatment of acute and chronic illnesses, and provides preventive care and

health education for all ages and both sexes. Some also care for hospitalized patients, do minor surgery

and/or obstetrics.

6. Obstetrics and Gynecology - These are surgical specialties dealing with the female reproductive organs.

7. Psychiatry [18].

The fourth medical school year is an elective year with 232 electives offered. Each elective is four weeks long.

Where standard elective choices seem too limiting, a student is encouraged to approach individual faculty members

to develop courses that more closely approach their individual needs. The year is divided into nine four-week

periods.
9

The authors believe that service sciences have much to learn from medical school curriculums. In that

spirit, the following is an adaptation of the Yale Medical School curriculum to what we call the School of Artificial

Systems and Service Sciences, which would educate and train management practitioners. Thus, we propose the

following:

Mission Statement

To holistically educate practitioner-scholars and future leaders who will advance the management practice

of artificial systems and service sciences.

Knowledge Objectives

Students will acquire and demonstrate a basic understanding, theoretical as well as empirical, of the

physical, psychological, economic, and cultural matters that affect the management of artificial systems and service

sciences. Knowledge consists not only of information but also includes the critical understanding of how that

information is obtained, expanded, and renewed. One‟s knowledge base must include the ability to augment one‟s

self through a lifetime of learning and scholarship. Students must couple this self-renewing capacity with an ability

8 http://domino.research.ibm.com/comm/www_fs.nsf/images/fsr/$FILE/summit_report.pdf
9 http://www.med.yale.edu/education/edu/mission.html

http://wpcarey.asu.edu/csl/
http://itsqc.cs.cmu.edu/
http://www.smeal.psu.edu/ebrc/
http://en.wikipedia.org/wiki/Surgery
http://en.wikipedia.org/wiki/Obstetrics
http://en.wikipedia.org/wiki/Obstetrics
http://en.wikipedia.org/wiki/Gynecology
http://domino.research.ibm.com/comm/www_fs.nsf/images/fsr/$FILE/summit_report.pdf
http://www.med.yale.edu/education/edu/mission.html

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

16

to evaluate new information critically and contribute to the discovery of new knowledge by engaging in an

independent research project culminating in a senior thesis. The school would ensure that graduating students

demonstrate, to the satisfaction of the faculty, the following knowledge, skills, and abilities:

 An understanding of the typical structure of artificial systems at the holistic, service, process, processor,

memory management, and micro instruction level.

 An understanding of best practice functioning at the holistic, service, process, processor, memory

management, and micro instruction level.

 Understanding of the normal anatomic and physiologic changes that occur over the lifecycle of an artificial

system.

 An understanding of the physics of electronic computers.

 An understanding of the psychology of the perception of how users, developers, administrators, and

managers view artificial systems during their lifecycle.

 An understanding of the etiology of artificial system defects including incorrect requirements and design,

maintenance and release interval errors, malware, and tool defects.

 An understanding of basic epidemiologic principles and the use of statistics in describing defects within

defined system populations.

 An understanding of the major challenges, both present and future, to the electronic health of communities

and nations, as well as a familiarity with the prevention and treatment strategies needed to address these

challenges.

 Knowledge of the clinical, laboratory, diagnostic imaging and pathologic manifestations of system defects,

and proficiency in interpreting each type of information. Depth of understanding should be sufficient to

allow for creation of appropriate differential diagnoses and establishment of additional investigative

strategies, when needed.

 A critical understanding of the principles of both curative and palliative therapeutics. This includes

objectives of repairs, assessment of efficacy and risks, and awareness of the common use of alternative and

complementary repairs.

 Knowledge of the strategies needed to prevent defects in artificial systems.

 Knowledge of existing systems service capabilities in the United States and other countries, and familiarity

with systems service management strategies to develop systems (both large scale and small) that maximize

systems service effectiveness, reduce errors, efficiently utilize scarce resources, and to correct inequities in

access to systems service.

 Awareness of the necessity for scientific method and knowledge of its application to force the discovery of

new knowledge [18].

Skills Objectives

The school would educate management practitioners who demonstrate skills in the core set of activities

required for artificial systems and service sciences. At the heart of these diagnostic activities are history taking and

physical examination which would be complemented by facility evaluations that focus on the appropriate use and

interpretation of procedures and tests. Students must demonstrate the ability to acquire, interpret, and apply

information from diverse sources to develop their diagnostic and management skills. Additionally, students learn to

communicate more effectively while carrying out these activities.

The school would ensure graduating students demonstrate, to the satisfaction of the faculty, the following:

 The ability to obtain an accurate systems maintenance history that covers relevant and essential aspects of

that history, including issues related to age, manufacturers, and maintenance budget while recognizing and

addressing any barriers to communication.

 The ability to perform both a complete and focused clinical examination in a manner that demonstrates

respect for systems stakeholders.

 An understanding of the clinical method: the process whereby information obtained from the history,

physical examination, and laboratory data is formulated into a differential diagnosis.

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

17

 The ability to formulate a plan of service that takes into consideration the system stakeholders, goals of

service, the risks, benefits, alternatives, and financial consequences of each option.

 The ability to find, identify, critically interpret, and utilize the relevant information from both printed and

electronic media and apply the scientific method in order to practice informed, up-to-date systems service.

 An understanding of the principles of artificial systems scholarship, including literature review, design of

hypothesis, formulation of specific aims, identification and application of state-of-the-art methods

including statistics, analysis, and interpretation of data which includes familiarity with the elements of

clinical and translational research and knowledge of responsible ethical research conduct.

 The ability to communicate effectively with systems stakeholders, colleagues, and others with whom the

management practitioner must exchange information in carrying out their responsibilities. These abilities

should include proficiency in the education of systems stakeholders, inquiries about management control

strategy, operator error, breaking bad news, counseling for behavior modification, obtaining informed

consent, and discussions of end-of-life issues.

 Knowledge of the indications for a core set of systems service procedures, as well as the complications of

those procedures. Students must demonstrate ability to obtain consent for the procedure, perform the

procedure, and to recognize and interpret the results.

 The ability to develop a scientific question, survey the literature, design and carry out a study to address

that question, and prepare a written presentation of that work in the form of an independent strategic

research project.

 The skills required to be a life-long management practitioner-scholar, including the ability to assess the

validity of the literature and to objectively apply the scientific method to problem-solving and decision-

making [18].

Student Attitudes

Artificial systems and service sciences students should strive to be more altruistic. Practitioners must be

committed to serving others and devoted to the care of their clients. They must bring ethical intent and action, as

well as empathy and compassion, to their physician-client type of relationship. Managers must demonstrate honesty

and integrity in all of their professional interactions. Empathy requires curiosity and a willingness to feel, perceive,

and understand the experiences of others. These management practitioners must listen to their “patient‟s story” to

understand the client‟s experience of the system malfunction in the context of their beliefs, values, personal

circumstances, and unique human qualities, and respond compassionately based on the clients‟ concerns.

Management practitioners have the responsibility to be aware of their own reactions and emotions with special

attention on how this influences attitudes toward and behavior with their clients. The School of Artificial Systems

and Service Sciences would admit students who demonstrate humanitarian values, maturity, and the capacity for

self-reflection. Through its curriculum and educational approach, the school would provide opportunities for

students to maintain, preserve, and enhance the empathy and compassion that attracted them to artificial systems and

service sciences so it continues to be evident in their development.

The school would ensure graduating students demonstrate, to the satisfaction of the faculty, the following:

 Empathic care of systems stakeholders through their interest in how they experience and cope with system

defects.

 Respect for stakeholder dignity, including the right to privacy and confidentiality.

 Knowledge of the principles that guide ethical decision-making and awareness of the major ethical

dilemmas in service sciences, including those arising at the beginning and end of life, those posed by the

expansion of science and technology, and those resulting from financial constraints and incentives.

 Honesty, accuracy, and integrity in all interactions with systems stakeholders and colleagues, including

scientific integrity.

 The ability to recognize and accept the limitations in one's knowledge and skills, along with an ongoing,

lifelong commitment to improve one's knowledge and abilities as a service sciences practitioner.

 An ethical commitment to understand and advocate for systems stakeholders interests and those of the

community over one's own personal interests.

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

18

 An awareness of one's vulnerability to stress and the influence stress has on the ability to care for one‟s

clients.

 An awareness of the possibility of a management practitioner‟s bias, arising both from personal

background, conflicts of interest, the culture of artificial science, and the ways that bias can affect the

delivery of systems care and the physician-client type relationship [18].

Context Of Artificial Systems And Service Sciences

Neither clients nor IT management practitioners exist in isolation. Students must understand the context in

which the clients live and the complex interactions between heterogeneous systems and the environment. Students

realize they will practice their profession within a context and must understand the needs and expectations of society

at large as well as have the ability to work with colleagues. Further, students should realize being an IT

management practitioner is a privilege - one that comes with a responsibility to serve the community that has

empowered them by providing access to their training and knowledge.

Thus the school would also ensure graduating students demonstrate, to the satisfaction of the faculty, the

following:

 An ability to understand the multi-factorial nature of artificial systems and relate such insight to the context

of the individual client, including, but not limited to, psychological, social, economic, and cultural factors.

 The ability to elicit the client‟s goals, values, and preferences in an understanding manner and to integrate

these values and preferences into an appropriate plan of service.

 An awareness of one's participation as a member of a service team and the ability to collaborate

appropriately with all those involved while respecting their roles and professional expertise.

 Demonstrate a theoretical and practical understanding of how artificial systems service is delivered, and

how the manner of that delivery can affect the individual practitioner.

 An understanding of the utility and limitations of evidence-based decision-making and cost-effective

service delivery.

 An appreciation of the artificial systems service profession's responsibility to society, both in our own

country and throughout the world. These responsibilities should include not only service to the underserved

or disenfranchised members of our own society, but also advocacy for the care of the disadvantaged

persons in other nations [18].

CONCLUSION

In conclusion, we believe at this juncture in the history of artificial systems and service sciences there are

many lessons to be learned from the behavioral sciences and medicine. Students training in artificial systems and

service sciences need to have more breadth and depth in critical areas. For example, in medical schools the entire

third and fourth years consist mainly of internships in the various major specialties. What are the appropriate major

specialties of artificial systems and service sciences? Industry best practice frameworks for service management,

such as the IT Infrastructure Library (ITIL) certainly provide guidance.
10

The Internal Medicine internship for physicians becomes the Service Desk internship for IT management

practitioners. Here students would serve as assistants to systems support specialists at large data center service

desks. Students would handle routine first line support, especially incident recording and escalation. Surgery

rotation becomes Change Management rotation for IT management practitioners. Students work with programmers

and change control specialists. Program maintenance is stressed. The Pediatric rotation becomes the Programming

internship. In this rotation, students work on programming teams developing new systems from scratch.

Requirements analysis, tool usage, version control, and system design would be strongly emphasized. The

Neurology internship becomes the networking technology rotation where students learn and work with network

specialists. Analogous to the Family Practice medical specialty would be Problem Control. In this module, students

work with system administrators. They learn what UNIX and Windows administrators really do. Finally and

10 http://www.itil.co.uk

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

19

perhaps most importantly, analogous to the Psychiatry rotation could be what ITIL calls Service Level Management.

This interdisciplinary approach is required to understand how services are conceived, designed, delivered, and

supported. Students work as executive assistants to first line IT managers. Emphasis is on the writing of service

level agreements, underpinning contracts, and operational level agreements.

Examining the analogies between artificial systems and service sciences and medicine is a fascinating area

for research. Recently a workshop was hosted by the Information Technology Service Management Forum to

promote awareness about opportunities for integrating service sciences into curricula with artificial systems with

service sciences scholars having an opportunity to play a major role in leading the cross-disciplinary curricula

design.
11

 Realizing and understanding this potential requires investigation of technology, human behavior, strategy,

design, and economics.

As the complexity of IT systems increase, the analogy of artificial systems and service sciences curricula to

those of medical schools, and the lessons thereby learned, will undoubtedly become stronger. Perhaps the most

important lesson will be that artificial systems and service sciences students be trained to be both first-rate

diagnosticians and ethical problem-solving management practitioners as well.

REFERENCES

1. Allen, S.G., Mugge P. & Wolff, M.F. Services Science To Be Taught At NC State. Research Technology

Management, Nov/Dec. 2006, Vol. 49 Issue 6.

2. Brooks, Frederick P. No Silver Bullet: Essence and Accidents of Software Engineering. Computer, Vol.

20, No. 4 (April 1987).

3. Dijkstra, E.W.G. Go To Statement Considered Harmful. Communications of the ACM 11, 3 (Mar.1968).

4. Denning P. J. and McGettrick. Re-centering Computer Science. Communications of the ACM November

2005/Vol. 48, No. 11 15.

5. Engardio, B & Kripalani. IBM May Rival India's Top Offshore IT Firms in Head Count. Computerworld.

April 04, 2007.

6. Foster, A. Student Interest in Computer Science Plummets. Chronicle of Higher Education 51, 38 (May 7,

2005), A31.8.

7. Hudak P. Conception, Evolution and Application of Functional Programming Languages. ACM

Computing Surveys, Vol. 21, No. 3, September 1989

8. Martin, F. Toy Projects Considered Harmful. Communications of the ACM. July 2006/Vol. 49, No. 7.

9. McCarthy, John C. 3.3 Million U.S. Services Jobs to go Offshore. Forrester, November 11.

http://www.forrester.com/ER/Research/Brief/Excerpt/0,1317,15900,FF.html. 2002.

10. McDougall, P.C. IBM To Move All Solutions Development Operations To India. InformationWeek

March 8, 2006.

11. McKinsey Global Institute. Off-shoring: Is it a Win-win Game? San Francisco: McKinsey & Company.

2003.

12. Parker S, & Wall T.D. Job and Work Design: Organizing Work to Promote Well-being and Effectiveness.

Sage Publications, ©1998.

13. Prabhakar ,B. & Litecky, C. R. IT Skills in a Tough Job Market. Communications of the ACM October

2005/Vol. 48, No. 10 91.

14. Rai A. & Sambamurthy V. (2006). Editorial Notes – The Growth of Interest in Services Management:

Opportunities for Information Systems Scholars. Information Systems Research. No.4, December 2006,

pp. 327-331.

15. Reich, R. The Work of Nations. New York: Alfred A. Knopf. 1991.

16. Simon, H. A. The Sciences of the Artificial - 3rd Edition. The MIT Press; 3 edition. October 1, 1996.

17. Srivastav S and Theodore, N. (2005). A Long Jobless Recovery: Information Technology Labor Markets

after the Bursting of the High-Tech Bubble. The Journal of Labor and Society · 1089-7011 · Volume 8 ·

March 2005.

18. www.med.yale.edu/education/edu/mission.html

11 http://www.itsmf.org

http://web.ebscohost.com/bsi/viewarticle?data=dGJyMPPp44rp2%2fdV0%2bnjisfk5Ie46bZMta6wT66k63nn5Kx68t6%2bTK2trUquprU4trCwSLioszjOw6SM8Nfsi9%2fZ8oHt5Od8u6evTLWsskiwpq8%2b6tfsf7vb7D7i2Lt68t6kjN%2fdu1nMnN%2bGu6ixSa%2bvsUmvnOSH8OPfjLvc84TqyuOQ8gAA&hid=119
http://www.forrester.com/ER/Research/Brief/Excerpt/0,1317,15900,FF.html
http://www.informationweek.com/;jsessionid=4NCUNU2D0QWEQQSNDLRSKH0CJUNN2JVN
http://worldcat.org/search?q=au%3ASharon+Parker&qt=hot_author
http://worldcat.org/search?q=au%3AToby+D+Wall&qt=hot_author
http://www.med.yale.edu/education/edu/mission.html
http://www.itsmf.org/

Journal of College Teaching & Learning – January/February 2009 Volume 6, Number 1

20

NOTES

