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ABSTRACT 

 

Enrollment in computer programming courses has plummeted in the past decade.  Facing a 

similar situation in the 1960s, the mathematics community responded by inventing the “new 

math.”  Unfortunately the new math failed because it was too abstract for students to see 

connections with their lives, and because math teachers were not adequately prepared.  Many of 

today’s computing related degree programs are in danger of failing for similar reasons. This 

paper argues that, besides off-shoring; there may be other less obvious reasons for the drop in 

enrollment.  These reasons include curriculums that overemphasize functional programming, and 

under-emphasize ethics and practical service internships.  This paper further argues that modern 

curriculums for the fields of Computer Science, Information Systems, Information Technology, 

and Software Engineering could all be improved by viewing them as sub-specialties of the newly 

emerging discipline of Service Sciences.  The paper concludes by sketching a basic curriculum for 

a hypothetical new program we call the School of Artificial Systems and Service Sciences.  It is an 

extension of the philosophical approach used at Yale Medical School. 
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INTRODUCTION 

 

hen Edsger Dijkstra wrote his seminal paper on programming, programmers were lost in millions of 

lines of spaghetti code [3].  Dijkstra showed the way out.  Now programmers have lost their way 

again -- this time amidst thousands of unread resumes.  As a result, in 1998 the percentage of all 

freshmen planning a major in computer science was only 1.4%.  Between 2000 and 2004, the percentage of 

incoming computer science freshmen fell by 60%.  Drop rates of 30-50% were common.  Results are similar for the 

other computing related fields including Information Systems, Software Engineering, and Information Technology 

[6, 17].  In the preface of his book "Pre-calculus Mathematics in a Nutshell," Professor George F. Simmons wrote 

that the “New Math” of the 1960s failed because it produced students who had "heard of the commutative law, but 

did not know the multiplication table” [4].  A similar situation now exists for the computing related disciplines that 

Herbert A. Simon referred to collectively as the “Sciences of the Artificial” [16]. 

 

This loss of student interest in Simon‟s sciences of the artificial has been blamed on various factors 

including media portrayals of computing as relatively unglamorous, and an impression that computing requires 

extraordinary programming skills.  Computing journals perpetuate these notions.  For example, Martin [8] argues 

that in capstone computer science courses students working individually should design and code a „real world‟ 

application.  Martin cites his experience of writing code for his small business.  In contrast, we believe strongly that 

to emphasize programming, real or imaginary, via a capstone course is, in this day and age, to waste the precious 

limited time professors have with their students.  Accordingly this paper focuses on other ideas to improve curricula 

for the artificial service sciences. 

 

This article is organized as follows.  First, the paper presents personal experiences of one of the authors as a 

professional code writer for several Fortune 500 companies, including IBM, from 1975 to 2000.  This experience 

suggests that programming skills have been but a small part of what students have needed historically.  Next, 

evidence from current economic literature is cited reminding the reader that professional code writing is no longer 

W 
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the high paying career it once was.  Finally, borrowing from Herbert Simon, the Yale Medical School curriculum, 

and the Information Technology Infrastructure Library (ITIL) ideas are presented on how to redesign computing 

curriculums to better address modern economic and organizational needs. 

 

WHAT IS “PROFESSIONAL” PROGRAMMING? 

 

Before rejoining academia, the primary author, Dr. M. Keith Wright, spent over twenty years as a 

professional programmer and his experiences reflect many trends from the era.  Originally drawn to the field by a 

college level love for programming, he began his first programming job in 1974.  In those days, computers and 

compilers were unavailable to all except academics, business owners and their employees.  The principal entry level 

requirement for professional programming was a technical college degree that included a couple of programming 

courses (Assembly, and either FORTRAN or COBOL).  The essential qualities employers wanted were analytical 

ability, intellectual curiosity, and loyalty.  Programming was a rare skill and programmers were in short supply.  The 

primary author‟s first job was in Houston, Texas, at a startup company with a government contract to digitize 

highways and power lines, the beginnings of technology found today in Google Earth and Yahoo maps.   

 

Computer centers in those days were populated with machines such as IBM 360s, Burroughs 3700s, and 

UNIVAC 1100s.  Using these machines were some of the best recent college graduates, old time COBOL and 

FORTRAN programmers, and part time academics.  Wright was part of a fifteen person programmer team assigned 

to write code for map plotter drivers from scratch.  He was doing design and using analytical geometry techniques 

learned in college.  “I was making good money.  I was perceived as a first-rate programmer.  I was in programmer 

heaven!”   

 

Unfortunately, the heavenly period lasted only about a year.  Then he learned his first and hardest 

professional programming lesson: professional code writing is primarily re-writing.  Sadly, beginning in the second 

year, Wright began re-writing his code the first of what seemed an endless number of times -- each re-write 

conforming to a different deployment environment.  He had to re-write the code of many of his former team mates 

who had moved on to higher paying jobs.  Thus, for the first time in his career, Wright was faced with a huge dose 

of what Fred Brooks first described as accidental complexity [2].
1
 

 

Because of the short supply of skilled professionals, programmers seldom stayed at a job more than a year 

or so.  The lure of extra money was compelling.  Wright soon changed jobs and learned another hard lesson: small 

programming teams are better than big teams.  He sub-contracted with a Silicon Valley firm called Informatics and 

became part of a one hundred person team developing a shop-floor control system for the United Airlines 

maintenance operations center in San Bruno, California.  The project was the beginning of current supply-chain 

technology.  What Wright did not understand was that he made a mistake by asking to be a programmer on the team.  

It seemed programmers were restricted to duties such as implementing CICS (green) screens.
2
  Alas, most of what 

he considered to be the interesting project tasks were, he was told, to be done by the systems analysts.  These tasks 

included database design, the module decomposition, and coupling strategy.   

 

Further exacerbating his boredom, Wright was told systems analysts had not yet completed their work.  

This meant there was nothing ready to program, and that nevertheless, he was to “look busy.”  It seemed that a 

mistake in the project‟s plan allowed programmers to be hired about three months before they were needed, 

resulting in thousands of suspect man-hours billed to United Air Lines. 

 

After a few weeks Wright could not face another day of trying to “look busy” and began seeking another 

opportunity.  He thought perhaps his next job should be as a systems analyst and went to work for a Virginia based 

company, Information Engineering Systems Corporation.  There he was part of a team doing data modeling for a 

supply chain project for Meijer department stores data center in Grand Rapids, Michigan.
3
  That job was fine, except 

Wright noticed the only consumers of the data models were the data modelers.  The intended consumers, the 

                                                 
1 A change in processor control, during expression evaluation. 
2 Customer Information Control System.  IBM  http://en.wikipedia.org/wiki/CICS 
3  http://www.meijer.com  

http://www.meijer.com/
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programmers, were employed by a different sub-contractor, Keane. 
4
  It seemed a mistake in the service level 

agreement allowed the programmers to proceed before the data models could be developed.  This bothered him and 

he moved on to his next job. 

 

Wright became a programmer again, this time with Levi Strauss in San Francisco working with operations 

research specialists coding an interesting CAD-CAM optimization algorithm to build blue jeans with the least 

amount of fabric -- using an early just-in-time inventory system, doing design, and using clever mathematical tricks.  

Once again he was in heaven until the day (two years later) when Levi Strauss off-shored their entire supply chain 

service.   

 

Wright‟s quest for interesting and honest computing work continued for the next decade, taking him back 

to academia, the Texas Workers Compensation Commission, National Semiconductor, Advanced Micro Devices, 

and finally IBM in 1998.  By the time Dr. Wright joined IBM, he was equipped with a University of Texas PhD in 

Information Systems.  He volunteered for a small Java programming team working on an interesting insurance fraud 

detection data mining application against the advice of almost all his new IBM colleagues who viewed programming 

as demeaning work. 

 

Once again he was in programmer heaven.  Wright was working with J2EE and learning web technologies 

for the first time, learning what an application server was, and what a web-application was. Regrettably that team 

was one of the last to ever develop an end-user application at IBM.  Today all IBM software products are huge 

middleware applications with millions of lines of code developed in teams distributed across the globe among many 

subsidiary companies and hundreds of programmers.  In 2000, he began a job on one of the IBM WebSphere 

development teams.  By then IBM programmers were known as „developers.‟  At IBM developers are more 

“technology wizards” than programmers.  One had to be a technology wizard to set up a programming workstation.  

These tedious tasks involved installing a large stack of software, including the J2EE, the Apache web server, the 

WebSphere Application Server, DB2, WebSphere Portal Server, and Tivoli Access Manager.  This stack of (usually 

immature) software releases contained many intricate version dependencies which changed about once a month.  

Learning the version dependencies required expert skill in surfing the IBM internal support websites.   

 

There were few support people for the developers.  Many of the UNIX, NT, and WebSphere administrators 

had been „out-placed‟ during the last few annual lay-offs, known internally as the annual “rank and yank” process.  

As a result, most of the IBM developers did almost no programming at all.  They spent their time installing software 

or testing prerequisite software.  However, programming was necessary to display simple looking web pages that 

interfaced with WebSphere Portal Server.  Coding these web pages was anything but simple.  It required expert 

skills in debugging in an n-tier environment.   This meant a thorough understanding of J2EE, security, XML, and 

WebSphere.  This was nothing like the functional programming one learned in college.  It was pure side-effect 

programming complete with another overwhelming dose of accidental complexity [2, 7].  Because of the lack of 

technology support; this kind of work was at best extremely frustrating and at worst impossible.  The gratification of 

design, the steady progress towards results, and the thrill of gaining ultimate control over technology was now 

completely absent.  Instead, one faced non-deterministic diagnostic work in the extreme and because the overall 

result depended on hundreds of other developers, it was work which gave any individual little control over the final 

work product.  Wright still believes the design of the jobs was very poor [12].  To make matters worse, technical 

project direction at IBM was usually under the control of non-technical first-line managers.  Often these managers 

were twenty-somethings fresh out of Ivy League MBA programs who lacked a detailed understanding of the 

technologies involved.  These young MBA types relied heavily on technical specialists at IBM called „architects.‟ 

 

The architects, few in number, were the IBM technology veterans with at least ten years at IBM; these 

people were seemingly unbothered by the slow pace of development, the long hours, and the fact the work had 

almost nothing to do with writing code.  The developers depended on these architects to dispense the correct 

workstation images, the correct test data, the correct method signatures, and the correct build paths.  Architects had 

power and they did not always part with it willingly.  Some of the preferred methods of retaining power included 

dispensing incorrect or incomplete documentation, working off hours to avoid knowledge sharing, and resisting 

                                                 
4  http://www.keane.com 
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management efforts to expand the team.  After all, it had taken years of heads-down behavior to get to their position 

as architects, along the way many of their comrades perished in the lay-offs.  The architects had learned well the 

hardest programming lesson that programmers who are dispensable, will be eventually dispensed with.  

Consequently, IBM architects continued to survive by doing what they had to do to become indispensable; they 

became experts in UNIX, Linux, DB2, Windows, and WebSphere Portal administration.  Architects were highly 

sought after and highly paid.  Regardless, they had little occasion to apply skills learned in school such as correct 

module decomposition, inheritance lattice construction, list processing, functional programming, etc.  In summary, 

despite the fact Wright loved programming, was good at it, and sought it at every turn his observations pursuing an 

IT career revealed professional programmers did little programming, and that was before the career was 

substantially off-shored.  

 

According to the McKinsey Global Institute [11], “a software developer who costs $60 an hour in the U.S. 

costs only $6 an hour in India.”  As a result, IBM launched a $200 million development center to handle the bulk of 

solutions development work for IBM worldwide in 2004 [10].  IBM now has 15% of its global work force in India, 

or 53,000 of its 356,000 employees.   Today the company employs only about 150,000 workers in the United States 

[5]. 

 

Since the mid-1990s a growing array of processes and services formerly conducted in the United States 

including code writing, software design, and data processing have been outsourced to providers in low wage 

countries.  U.S. imports of business, professional, and technical services associated with off-shore outsourcing rose 

from $21.2 billion in 1997 to approximately $37.5 billion in 2002, an increase of 77 percent.  The most widely cited 

estimate of the scale of white-collar off-shore outsourcing is a 2002 Forrester projection that “over the next 15 years, 

3.3 million U.S. services industry jobs and $136 billion in wages will move off-shore” [9]. 

 

For the IT industry off-shoring is no longer simply an experiment with alternative service delivery; it has 

become an established business practice.  There is little doubt the growth of off-shore outsourcing has negatively 

affected both job availability and wages in the job market which compounds the difficulties faced by unemployed IT 

workers in what has been a prolonged downturn [17].  According to a recent report released by the Brookings 

Institution, one of every five programming and software engineering jobs in Silicon Valley will be lost to off-

shoring over the next decade.
5
  The high salaries in Silicon Valley are cited as a major reason.  The study predicted 

that about 3.4 million of the U.S. jobs will be off-shored to other low cost destinations, such as India and China, 

between 2000 and 2015.  The Brookings Institution also reports about 20 percent of the existing U.S. IT jobs will be 

lost to such low cost destinations by 2015.  This study revealed about 60,000 well paying jobs will be off-shored 

between 2004 and 2015.  Many jobs could disappear from specific metropolitan areas.  San Jose is expected to lose 

24% to 26% of the programming and software engineering jobs that existed in 2004.  This area is forecast to lose 

almost 43% of the 52,510 jobs that existed three years ago.  Other top vulnerable metro areas are San Francisco, CA, 

Boulder, CO, Lowell, MA, Stamford, CT, and Dallas, TX.  In Dallas about 49,000 to 57,000 jobs will be lost to 

other countries over the next eleven years.  Research predicts the average rate of job loss in the United States due to 

off-shoring will be unusually high in Connecticut, Massachusetts, New Jersey, Colorado, Texas, and California [17]. 

 

Besides off-shoring, the IT industry still suffers from the 2001 recession as well as the ensuing jobless 

recovery [17].  Between March 2001 and November 2001 the IT industry shed 197,000 jobs, or 9.2 percent of 

employment.  Further the industry fared no better during the recovery.  By March 2002 (one year after the start of 

the recession) IT industry employment had declined by more than 270,000 jobs.  Significant losses continued such 

that by March 2003, industry employment had fallen by an additional 113,000 jobs.  Although the industry still 

suffered a decline of 19,700 jobs, employment losses finally slowed by March 2004.  All told these mounting losses 

meant the industry lost about 402,800 jobs between March 2001 and March 2004.  Of these lost jobs 205,000 (over 

50 percent) were lost during the economic recovery [17]. 

 

Astonishingly, industry leaders and economic policy makers repeatedly proclaimed the future of the 

American workforce is in information technology and knowledge-based jobs working as what Robert Reich termed 

“symbolic analysts” [15].  Supporting these claims are signs, since March of 2004, of a weak resurgence in the IT 

                                                 
5 www.brook.edu/metro/pubs/20070131_offshoring.htm 
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industry.  The total number of available positions increased almost 50% since April 2002 if Monster.com is a 

reasonable indicator [17].  The U.S. Bureau of Labor Statistics forecasts a 20%–50% job growth in all computing 

specialties by 2012, except for computer operations which is declining and programming which is flat [9].  It is 

widely reported that finding people to fill the growing number of IT jobs will soon be more difficult than ever.  But 

as we have seen, evidence suggests the vast majority of the U.S. jobs will not be programming oriented and not 

highly paid.  And if something like Senate Bill S.B. 1348: The Comprehensive Immigration Reform Act of 2007 is 

passed then the permitted number of H1B visas would more than double and further depress wages for American 

programmers.
6
 

 

The web has radically changed the demand for programming skills [13].  Web programming which is 

mainly side-effect programming jumped into a commanding lead in the total number of jobs requiring programming 

skills and is now mentioned in an impressive 42.6% of programming job ads.  Web programming, UNIX, SQL 

programming, and Oracle database seem to be in the top six skills in the current job market.  Each of these skills is 

demanded in at least 20% of advertised IT jobs.  Web programming comprises a complex set of non-functional 

programming skills including scripting languages and meta-languages such as XML.  The demand for UNIX, Linux, 

and Windows skills seems to be holding steady.  Over half of the 2005 job advertisements listed skills in one of 

these three operating systems as necessary or desirable.  Demand for database, ERP (such as SAP, Oracle, and 

PeopleSoft), and e-commerce servers skills (such as WebSphere and WebLogic) are on the rise [13]. 

 

COMPUTING CURRICULUMS IN THE FUTURE 

 

Based on experience it would be unwise to design future computing related curriculums solely on the above 

employment figures.  As you know, the arbitrariness of the evolution of computing standards permits demand for 

some skills to persist while that for others die quickly.  When designing curricula it is often beneficial to use retro-

thinking and consider first the characteristics of the capstone courses. 

 

Many capstone courses involve locating real world programming projects in the community [8].  However, 

this often consumes too much time as professors teach their students during limited semesters.  Teachers trudging 

about town looking for programming projects waste time.  Further, real projects are usually well beyond the grasp of 

most new graduates.  We probably do students a tremendous disservice by giving them the impression they are 

likely to make a living as a professional software writer.  It is true there will be those gifted individuals who do 

make a living as a programmer, but today it is more unlikely.  Other capstone computing courses have students 

working individually on long imaginary projects developed from scratch that gives them a chance to do their own 

design and build something they feel they own.  Unfortunately, this may give students a poor understanding of the 

real world.  The real world is not about working alone.  It is about serving others.  If students finish the course 

thinking, “I built something for me; I can profit that way,” then academics have probably failed. 

 

In brief, to survive in modern times, many computing related degree programs need a complete make over.  

The Association for Computing Machinery (ACM) education board‟s Great Principles of Computing Project seeks 

to portray the field in terms of its fundamental principles and core practices.  Programming is only one of four core 

practices.  The other three are: systems thinking, modeling, and innovating.  The authors believe deemphasizing 

programming and giving systems thinking a more prominent role in computing curricula would go a long way 

toward improving its effectiveness and appeal.  (For an excellent discussion of creative ideas for adding innovation 

to Computer Science curricula we suggest [4].) 

 

Herbert A. Simon is perhaps the most well-known proponent of systems thinking in the computing 

sciences.
7
 

 

                                                 
6  http://www.washingtonwatch.com/bills/show/110_SN_1348.html. 
7 Simon characterized Artificial Science (as opposed to natural science) as those phenomena  whose behavior is contingent upon 

the purpose of the designers.   
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…(computers) can be studied in the abstract, namely using mathematics. Yet, they can and must also be 

studied empirically….the behavior of computers will turn out to be governed by simple laws, the apparent 

complexity resulting from that of the environment they are trying to adapt to [16]. 

 

Historically, computing curricula have not emphasized the empirical study of these artificial systems.  A new field 

called “Service Sciences” is emerging in academia in which the empirical study of artificial systems will play an 

undeniable part. 

 

Service Sciences 

 

Service sciences is emerging because the economies of the major industrialized nations are now more than 

75% services based.  As a result service sciences have been mentioned in recent articles in the Financial Times, 

Business Week, Harvard Business Review, Technology Review, and The New York Times [14].   Service sciences 

apply insights from computer science, operations research, engineering, management, social, cognitive, and legal 

science to analyze how to align people and technology (socio-technical systems) in a more productive way to 

generate value for both service providers and clients.  You cannot discuss services without considering people and 

ethics both in terms of building lasting relationships and in understanding the dynamics of the socio-technical 

interface between the provider, client, and the technological processes. 

 

At IBM services are said to have the following unique properties: 

 

 all economic activity whose output is not a physical construct, 

 an activity provided as a solution to customer problems, 

 a change in state of an economic entity caused by another, 

 intangible and perishable, 

 created and used simultaneously, 

 co-produced by the customer and the provider, 

 a time-perishable experience, and 

 highly customized. 

 

Thus, a service is a provider/client interaction that creates and adds value.  For instance, in a typical doctor/patient 

interaction both sides benefit from the transaction and it is referred to as "capturing value."  The doctor receives a 

fee, the patient gets a health assessment, and (it is hoped) recovers from the illness. This basic principle also 

underlies the interaction between any service provider and consumer.  The provider and client synergistically 

coordinate their work (co-production) and in the process both create and capture value.  Services typically require an 

assessment during which the provider and client come to understand one another's goals and capabilities.  In the case 

of the doctor/patient interaction, the patient checks to see if the doctor is licensed and/or accredited and if he or she 

has the right specialty for the given illness.  The doctor also conducts an assessment to determine the patient's 

current ailment, medical history, and to verify payment details.  All these steps factor into both sides capturing value 

from the service.  Obviously for IT and business services these assessments can be far more complex, but the 

processes and measurements are very similar.  Often if the client of a service does not train the necessary service 

people in a reengineered process for example, the client will not receive the best benefits of the service.  The 

provider in many cases must monitor and assess the way the client is performing their duties and responsibilities.  

Also, the client needs to determine that the provider is likewise applying satisfactory effort and quality controls in 

the performance of their tasks.  These issues become more important when outsourcing, especially when the client 

outsources a component of its IT business to a provider that is in a different country with different government 

regulations and national cultures.  

 

Service sciences have had a low priority in academe until recently.  However, we believe the empirical 

study of artificial systems will become an increasingly important part of what is considered to be service sciences 

and a primary paradigm by which future computing related curriculum are designed.  For example in 2004, IBM 
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Research published the white paper "Services Science: A New Academic Discipline?" 
8
  Presently IBM Research is 

working with Arizona State, Carnegie Mellon, and Penn State universities on joint research projects.  In 2006, North 

Carolina State University became the first American research university to offer new master's-level curricula in 

Service Sciences in its Colleges of Engineering and Management [1].  

 

PROPOSED ARTIFICIAL SYSTEMS AND SERVICE SCIENCES PROGRAM  

 

Surveys of high school students reveal they are well aware of the diminishing career prospects in 

computing related disciplines.  Research shows students find other technical fields such as bioinformatics and 

molecular biology more attractive [6].  So why not look to the medical school curriculums for some guidance for 

designing curricula for an Artificial Systems and Service Sciences degree program? 

 

For example, at Yale Medical School the first year consists of basic sciences in normal body structure, 

functions, growth, and development.  In the second year more emphasis is placed on disease and its treatment 

including pathology, pharmacology, microbiology, immunology, and how to take a medical history.  During the 

third year students receive clinical training by rotating through various hospitals and ambulatory services.  All 

students participate in the following seven clerkships:  

 

1. Internal Medicine - This deals with non-surgical treatment of diseases in adults, especially of internal 

organs. 

2. Surgery 

3. Pediatrics – Deals with the medical care of people 0-21 years. 

4. Neurology  

5. Family Practice - Deals with treatment of acute and chronic illnesses, and provides preventive care and 

health education for all ages and both sexes. Some also care for hospitalized patients, do minor surgery 

and/or obstetrics. 

6. Obstetrics and Gynecology - These are surgical specialties dealing with the female reproductive organs. 

7. Psychiatry [18]. 

 

The fourth medical school year is an elective year with 232 electives offered.  Each elective is four weeks long.  

Where standard elective choices seem too limiting, a student is encouraged to approach individual faculty members 

to develop courses that more closely approach their individual needs. The year is divided into nine four-week 

periods.
9
 

 

The authors believe that service sciences have much to learn from medical school curriculums.  In that 

spirit, the following is an adaptation of the Yale Medical School curriculum to what we call the School of Artificial 

Systems and Service Sciences, which would educate and train management practitioners.  Thus, we propose the 

following: 

 

Mission Statement 

 

To holistically educate practitioner-scholars and future leaders who will advance the management practice 

of artificial systems and service sciences. 

 

Knowledge Objectives 
 

Students will acquire and demonstrate a basic understanding, theoretical as well as empirical, of the 

physical, psychological, economic, and cultural matters that affect the management of artificial systems and service 

sciences.  Knowledge consists not only of information but also includes the critical understanding of how that 

information is obtained, expanded, and renewed.  One‟s knowledge base must include the ability to augment one‟s 

self through a lifetime of learning and scholarship.  Students must couple this self-renewing capacity with an ability 

                                                 
8  http://domino.research.ibm.com/comm/www_fs.nsf/images/fsr/$FILE/summit_report.pdf   
9 http://www.med.yale.edu/education/edu/mission.html  

http://wpcarey.asu.edu/csl/
http://itsqc.cs.cmu.edu/
http://www.smeal.psu.edu/ebrc/
http://en.wikipedia.org/wiki/Surgery
http://en.wikipedia.org/wiki/Obstetrics
http://en.wikipedia.org/wiki/Obstetrics
http://en.wikipedia.org/wiki/Gynecology
http://domino.research.ibm.com/comm/www_fs.nsf/images/fsr/$FILE/summit_report.pdf
http://www.med.yale.edu/education/edu/mission.html
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to evaluate new information critically and contribute to the discovery of new knowledge by engaging in an 

independent research project culminating in a senior thesis.  The school would ensure that graduating students 

demonstrate, to the satisfaction of the faculty, the following knowledge, skills, and abilities: 

 

 An understanding of the typical structure of artificial systems at the holistic, service, process, processor, 

memory management, and micro instruction level.  

 An understanding of best practice functioning at the holistic, service, process, processor, memory 

management, and micro instruction level.  

 Understanding of the normal anatomic and physiologic changes that occur over the lifecycle of an artificial 

system. 

 An understanding of the physics of electronic computers. 

 An understanding of the psychology of the perception of how users, developers, administrators, and 

managers view artificial systems during their lifecycle. 

 An understanding of the etiology of artificial system defects including incorrect requirements and design, 

maintenance and release interval errors,  malware, and tool defects. 

 An understanding of basic epidemiologic principles and the use of statistics in describing defects within 

defined system populations.  

 An understanding of the major challenges, both present and future, to the electronic health of communities 

and nations, as well as a familiarity with the prevention and treatment strategies needed to address these 

challenges.  

 Knowledge of the clinical, laboratory, diagnostic imaging and pathologic manifestations of system defects, 

and proficiency in interpreting each type of information.  Depth of understanding should be sufficient to 

allow for creation of appropriate differential diagnoses and establishment of additional investigative 

strategies, when needed.  

 A critical understanding of the principles of both curative and palliative therapeutics. This includes 

objectives of repairs, assessment of efficacy and risks, and awareness of the common use of alternative and 

complementary repairs.  

 Knowledge of the strategies needed to prevent defects in artificial systems. 

 Knowledge of existing systems service capabilities in the United States and other countries, and familiarity 

with systems service management strategies to develop systems (both large scale and small) that maximize 

systems service effectiveness, reduce errors, efficiently utilize scarce resources, and to correct inequities in 

access to systems service. 

 Awareness of the necessity for scientific method and knowledge of its application to force the discovery of 

new knowledge [18]. 

  

Skills Objectives 
 

The school would educate management practitioners who demonstrate skills in the core set of activities 

required for artificial systems and service sciences.  At the heart of these diagnostic activities are history taking and 

physical examination which would be complemented by facility evaluations that focus on the appropriate use and 

interpretation of procedures and tests.  Students must demonstrate the ability to acquire, interpret, and apply 

information from diverse sources to develop their diagnostic and management skills.  Additionally, students learn to 

communicate more effectively while carrying out these activities.   

 

The school would ensure graduating students demonstrate, to the satisfaction of the faculty, the following:  

 

 The ability to obtain an accurate systems maintenance history that covers relevant and essential aspects of 

that history, including issues related to age, manufacturers, and maintenance budget while recognizing and 

addressing any barriers to communication.  

 The ability to perform both a complete and focused clinical examination in a manner that demonstrates 

respect for systems stakeholders. 

 An understanding of the clinical method: the process whereby information obtained from the history, 

physical examination, and laboratory data is formulated into a differential diagnosis.  
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 The ability to formulate a plan of service that takes into consideration the system stakeholders, goals of 

service, the risks, benefits, alternatives, and financial consequences of each option.  

 The ability to find, identify, critically interpret, and utilize the relevant information from both printed and 

electronic media and apply the scientific method in order to practice informed, up-to-date systems service. 

 An understanding of the principles of artificial systems scholarship, including literature review, design of 

hypothesis, formulation of specific aims, identification and application of state-of-the-art methods 

including statistics, analysis, and interpretation of data which includes familiarity with the elements of 

clinical and translational research and knowledge of responsible ethical research conduct.  

 The ability to communicate effectively with systems stakeholders, colleagues, and others with whom the 

management practitioner must exchange information in carrying out their responsibilities. These abilities 

should include proficiency in the education of systems stakeholders, inquiries about management control 

strategy, operator error, breaking bad news, counseling for behavior modification, obtaining informed 

consent, and discussions of end-of-life issues.  

 Knowledge of the indications for a core set of systems service procedures, as well as the complications of 

those procedures.  Students must demonstrate ability to obtain consent for the procedure, perform the 

procedure, and to recognize and interpret the results.  

 The ability to develop a scientific question, survey the literature, design and carry out a study to address 

that question, and prepare a written presentation of that work in the form of an independent strategic 

research project.  

 The skills required to be a life-long management practitioner-scholar, including the ability to assess the 

validity of the literature and to objectively apply the scientific method to problem-solving and decision-

making [18].  

 

Student Attitudes 

 

Artificial systems and service sciences students should strive to be more altruistic.  Practitioners must be 

committed to serving others and devoted to the care of their clients.  They must bring ethical intent and action, as 

well as empathy and compassion, to their physician-client type of relationship.  Managers must demonstrate honesty 

and integrity in all of their professional interactions.  Empathy requires curiosity and a willingness to feel, perceive, 

and understand the experiences of others.  These management practitioners must listen to their “patient‟s story” to 

understand the client‟s experience of the system malfunction in the context of their beliefs, values, personal 

circumstances, and unique human qualities, and respond compassionately based on the clients‟ concerns.  

Management practitioners have the responsibility to be aware of their own reactions and emotions with special 

attention on how this influences attitudes toward and behavior with their clients.  The School of Artificial Systems 

and Service Sciences would admit students who demonstrate humanitarian values, maturity, and the capacity for 

self-reflection.  Through its curriculum and educational approach, the school would provide opportunities for 

students to maintain, preserve, and enhance the empathy and compassion that attracted them to artificial systems and 

service sciences so it continues to be evident in their development. 

 

The school would ensure graduating students demonstrate, to the satisfaction of the faculty, the following: 

 

 Empathic care of systems stakeholders through their interest in how they experience and cope with system 

defects. 

 Respect for stakeholder dignity, including the right to privacy and confidentiality.  

 Knowledge of the principles that guide ethical decision-making and awareness of the major ethical 

dilemmas in service sciences, including those arising at the beginning and end of life, those posed by the 

expansion of science and technology, and those resulting from financial constraints and incentives.  

 Honesty, accuracy, and integrity in all interactions with systems stakeholders and colleagues, including 

scientific integrity.  

 The ability to recognize and accept the limitations in one's knowledge and skills, along with an ongoing, 

lifelong commitment to improve one's knowledge and abilities as a service sciences practitioner.  

 An ethical commitment to understand and advocate for systems stakeholders interests and those of the 

community over one's own personal interests.  
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 An awareness of one's vulnerability to stress and the influence stress has on the ability to care for one‟s 

clients. 

 An awareness of the possibility of a management practitioner‟s bias, arising both from personal 

background, conflicts of interest, the culture of artificial science, and the ways that bias can affect the 

delivery of systems care and the physician-client type relationship [18].  

 

Context Of Artificial Systems And Service Sciences  
 

Neither clients nor IT management practitioners exist in isolation.  Students must understand the context in 

which the clients live and the complex interactions between heterogeneous systems and the environment.  Students 

realize they will practice their profession within a context and must understand the needs and expectations of society 

at large as well as have the ability to work with colleagues.  Further, students should realize being an IT 

management practitioner is a privilege - one that comes with a responsibility to serve the community that has 

empowered them by providing access to their training and knowledge.  

 

Thus the school would also ensure graduating students demonstrate, to the satisfaction of the faculty, the 

following:  

 

 An ability to understand the multi-factorial nature of artificial systems and relate such insight to the context 

of the individual client, including, but not limited to, psychological, social, economic, and cultural factors.  

 The ability to elicit the client‟s goals, values, and preferences in an understanding manner and to integrate 

these values and preferences into an appropriate plan of service.  

 An awareness of one's participation as a member of a service team and the ability to collaborate 

appropriately with all those involved while respecting their roles and professional expertise.  

 Demonstrate a theoretical and practical understanding of how artificial systems service is delivered, and 

how the manner of that delivery can affect the individual practitioner.  

 An understanding of the utility and limitations of evidence-based decision-making and cost-effective 

service delivery.  

 An appreciation of the artificial systems service profession's responsibility to society, both in our own 

country and throughout the world. These responsibilities should include not only service to the underserved 

or disenfranchised members of our own society, but also advocacy for the care of the disadvantaged 

persons in other nations [18].  

 

CONCLUSION  

 

In conclusion, we believe at this juncture in the history of artificial systems and service sciences there are 

many lessons to be learned from the behavioral sciences and medicine.  Students training in artificial systems and 

service sciences need to have more breadth and depth in critical areas.  For example, in medical schools the entire 

third and fourth years consist mainly of internships in the various major specialties.  What are the appropriate major 

specialties of artificial systems and service sciences?  Industry best practice frameworks for service management, 

such as the IT Infrastructure Library (ITIL) certainly provide guidance.
10

  

 

The Internal Medicine internship for physicians becomes the Service Desk internship for IT management 

practitioners.  Here students would serve as assistants to systems support specialists at large data center service 

desks.  Students would handle routine first line support, especially incident recording and escalation.  Surgery 

rotation becomes Change Management rotation for IT management practitioners.  Students work with programmers 

and change control specialists.  Program maintenance is stressed.  The Pediatric rotation becomes the Programming 

internship.  In this rotation, students work on programming teams developing new systems from scratch.  

Requirements analysis, tool usage, version control, and system design would be strongly emphasized.  The 

Neurology internship becomes the networking technology rotation where students learn and work with network 

specialists.  Analogous to the Family Practice medical specialty would be Problem Control.  In this module, students 

work with system administrators.  They learn what UNIX and Windows administrators really do.  Finally and 

                                                 
10 http://www.itil.co.uk 
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perhaps most importantly, analogous to the Psychiatry rotation could be what ITIL calls Service Level Management.  

This interdisciplinary approach is required to understand how services are conceived, designed, delivered, and 

supported.  Students work as executive assistants to first line IT managers.  Emphasis is on the writing of service 

level agreements, underpinning contracts, and operational level agreements.  

 

Examining the analogies between artificial systems and service sciences and medicine is a fascinating area 

for research.  Recently a workshop was hosted by the Information Technology Service Management Forum to 

promote awareness about opportunities for integrating service sciences into curricula with artificial systems with 

service sciences scholars having an opportunity to play a major role in leading the cross-disciplinary curricula 

design.
11

  Realizing and understanding this potential requires investigation of technology, human behavior, strategy, 

design, and economics.  

 

As the complexity of IT systems increase, the analogy of artificial systems and service sciences curricula to 

those of medical schools, and the lessons thereby learned, will undoubtedly become stronger.  Perhaps the most 

important lesson will be that artificial systems and service sciences students be trained to be both first-rate 

diagnosticians and ethical problem-solving management practitioners as well.    
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