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tatistics instructors always have a choice in teaching statistical concepts.   The choice is between using 

real data sets or data that has been constructed.   For those statistics courses, whose students have good 

mathematical skills, real data is preferable demonstrating the usefulness and the applicability of the 

subject of statistics.  However, students with less mathematical skills sometimes spend more time handling or 

worrying about calculations than learning the concepts taught.   We believe that having data sets with integer values 

for averages and standard deviations in calculation intensive topics like correlation and regression allow the students 

to spend more time learning the concepts.  The techniques we present also yield integer coefficients in regression and 

rational number values for the correlation. Hundreds of data sets can be constructed.   A second benefit of this paper is 

in the taking and correcting of exams.  Real data sets are unnecessary for exams (probably even undesirable).  If a 

student on an exam gets a regression equation of the form: ˆ 5 4Y X  , they are confident that they have the correct 

answer. For the professor it is easier to grade correct answers.   

 

Two techniques for generating data sets with nice numbers in correlation and regression are detailed.   The 

techniques for finding integer solutions are based on first generating sets of uncorrelated variables and then using 

simple search algorithms on a computer.   Section One has the first technique, Section Two has the second method 

which is based on permutations on the order of the data, Section Three discusses autocorrelation using techniques 

similar to Section One. 

 

SECTION ONE 

 

This section finds data sets for correlation and regression based on the formulas: 
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 The technique will produce integer data; the parameters  a, b, σx, σy  will be integers; r will then be a rational 

number.  We illustrate by finding an integer data set with an integer standard deviation for n=4 pairs of data.   Letting 

i, j, k be integers, then the deviations from the average Dx satisfy 

1X -X = i, 2X -X = j, 3X -X = k, 4X -X = -i-j-k.     To have an integer standard deviation σx  the equation 

i
2
+j

2
+k

2
+(i+j+k)

2
 = 4*mx

2
  must be satisfied for some integer mx .   A sequence of four nested „do loops‟ generates the 

required data.   The Excel Macro Code “GetSDX” in the appendix generates the following sets of deviations Dx
T
 ={i, j, 

k, -i-j-k}:  
 

 #1:   Dx
T

 = {-1, -1, 1, 1}     with σx =1 

 #2:   Dx
T
 = {-3, -1,-1, 5}    with σx =3 

 #3:   Dx
T

 = {-7, -1, 1, 7}     with σx =5 

 #4    Dx
T

 = {-11, -1, 5, 7}   with σx =9 

 #5    Dx
T

 = {-15, 1, 7, 7}    with σx =11. 

S 
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The variable Y will be generated from deviations Y-Y=  Dy of the form Dy = b*Dx +f*O3 +g*O4 , where  O3, 

O4 are orthogonal to Dx and the unit vector I
T
 ={1,1,1,1} ( 

T
 denotes transpose),  and  b, f, g  are integer constants to be 

determined so that Dy  has an integer standard deviation. The vectors O3, O4 are easily determined with a little 

tweaking and trial and error from any linear algebra program that outputs rational numbers from the Gram-Schmidt 

process. [The vectors O3, O4 can also be determined from multiple regression since the residuals are orthogonal to the 

independent variables in a regression.]  As an example, if the deviations are Dx
T
 = { -3, -1, -1, 5} then a possible basis 

is: 
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Now, define the inner product in the usual way:  ( , )
i i

x y x y , so that orthogonal vectors have 

( , ) 0x y  , and 
x x xD = (D ,D ) nσ .  Since (Dx ,Dx) = 36, (O3, O3)=2,  (O4, O4)=18,  to have an integer value for σy,  

Dy  must have (Dy ,Dy) of the form  36b
2
+2f

2
+18g

2
 = 4*my

2
 for some integer my.   This requires only a slight 

modification of the code for the Excel Macro  “GetSDX”.   The modification is given in the appendix as Excel Macro 

“GetSDY”.      GetSDY generates 68 possible values for f, g, and h.  Two of those 68 are summarized directly below 

along with the correlation between Dx and Dy,  ( , ) [ ( , ) ( , )]
x y x x y y

D D D D D Dr  : 

 

b=4, f=9, g=3  with σy = 15,    Dy
T
 = {-3,-19,-1,23}  r=.8 

 

b=2, f=3, g=3  with σy = 9,      Dy
T
 = {3,-11,-5,13}   r=2/3. 

 

The X variable can be any affine transformation of the deviations:  X= c + d*Dx , where c, d are integer 

constants. The variable Y can now be generated as  Y=a +b*X +d*f*O3+d*g*O4  =  a +b*c +b*d*Dx 

+d*f*O3+d*g*O4.  Given the orthogonality it is easy to compute that 
2

x xSSXY=b*d (D  ,D ) , 
x xx (D ,D )/nσ =d , 

y yσ =d*m .  The correlation is, of course, unchanged by the linear transformation of the variables, and is the same as 

reported above.  Also, since by construction O3, O4 are orthogonal to X, the regression of Y on X yields the regression 

equation Ŷ=a+bX , with the same a, b as in the definition of Y. 

  

 

This section is finished by reporting two produced data sets.  

 

The quantities  Dx
T
 = {-3,-1,-1,5}, c=4, d=1, b=4, f=9, g=3 bring about a data set: 

 

X Y 

1 18            X = 4, σx = 3, Y = 21, σy = 15, r = .8, Ŷ=5+4X ,  

 

3 2            
2ˆ( - ) nRMSE= 9Y Y  . 

3 20 

9 44.  

 

The quantities Dx
T
 = {-3,-1,-1,5}, c=5, d=1, b=3, f=12, g=4 bring about the data set: 
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X Y 

2 28            X = 5, σx = 3, Y = 25, σy = 15, r = .6, Ŷ=10+3X , RMSE = 12. 

4 2 

4 26 

10 44.  

 

SECTION TWO 

 

This section presents a second method for generating regression data sets.   It starts with two sets of 

deviations Dx, Dy fashioned as in Section One[Dx, Dy can be the same].   The technique fixes the order of the Dx 

deviations, then computes every permutation of the order of the Dy deviations, followed  by the calculated correlation 

between Dx and the permuted Dy.    A visual perusal of the resulting list will probably yield sets of deviations with 

clean correlations.  Affine transformations of Dx, Dy create regression data sets with integer parameters. 

 

We illustrate with n=5 and formulas based on computing standard deviations with n-1: 
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where  
2( ) /( 1)xs X X n   , 

2( ) /( 1)ys Y Y n   . 

 

Two sets of integer sample standard deviation deviations were generated from GETSDX with n replaced by 

n-1:  Dx
T
 = {-3,-1,1,1,2}, sx=2, Dy

T
 = {-5,-2,-1,3,5}, sy=4.   The permutations were generated from an algorithm found 

in Knuth[1], and the Excel Macro code for  the permutations of the integers 1, 2, 3, 4, 5 is given in the appendix.  

After that the VLOOKUP function can be used in Excel to permute the deviations Dy.    Some of the 5!=120 

permutations of Dy along with their correlations with Dx are given below: 

  

Dx
T
 =       { -3     -1      1     1      2 } 

 

Permuted   Dy
T
 = { -1      5     -5     3      1 }     r = -1/4  =  -.25 

 {  3      5     -5    -1     -2 }     r = -3/4  =   -.75 

 { -5      5      3    -1     -2 }     r =  1/4  =     .25 

 {-1      5     -2     3      5 }      r = -11/32  =  -.34375                                  

 { 3      5     -2    -1     -5 }      r = -27/32  =  -.84375                                

 {-5     -3     1      2      5 }      r =  31/32   =  .96875 

 { -1     -5     5      3     -2}      r =  3/8  =  .375 

 { 3     -5      5     -1    -2 }      r = -1/8  = -.125 

 { -5    -1      5      3      2 }     r =   5/8  = .625.    

 

The X,Y variables are formed as X=c+d*Dx, Y=f+g*Dy   yielding a regression equation  

Ŷ=a+bX , where  

x y

x x

(D ,D )g
b=

d (D ,D )
,     a=f-b*c.  

 

Choosing c, d, f, g appropriately will make a and b integers.  [Obviously, if x xg=(D ,D )k  and x yd=(D ,D ) for 

some integer k then a and b will be integers.]  
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We finish this section by using the technique to create two more data sets.   

 

Take Dx
T
 = { -3   -1    1   1    2 }, Dy

T
 =   { -1     5    -5    3     -2  } and choose c=5, d=1, f=22, g=4 to get the data set:  

 

X Y 

2 18            X = 5, sx = 2, Y = 22, sy = 16, r = -.25, Ŷ=32-2X , RMSE=13.856. 

4 42 

6 2 

6 34  

7 14. 

 

Suppose Dx
T
 = { -3  -1  1  1  2},   Dy

T
 =   { -3   -5    1    5   2 }.   Choosing c=7, d=2, f=23, g=4 and the first 

set of deviations gives a data set:  

 

X Y 

1 11            X = 7, sx = 4, Y = 23, sy = 16, r = .75, Ŷ=2+3X , RMSE=9.466. 

5 3 

9 27 

9 43 

11 31. 

 

SECTION THREE 

 

In this part the methods of Section One are used  to derive data sets that have autocorrelations with rational 

values.  Assume the time series model: Y= a +bT +E.  The autocorrelation is computed from the residuals of the 

regression of Y on T.  We shall produce a set of residuals with nice autocorrelations. Since the residuals from the 

regression are orthogonal to I and T,   we shall again find a basis for the subspace of residuals.  The complete set of 

possible regression residuals is then determined from linear combinations of the basis.  A simple search allows one to 

find residuals with autocorrelations that are rational numbers. 

 

As an example suppose n=7, T = { 1, 2, 3, 4, 5, 6, 7 }
T
 .  The subspace of residuals is orthogonal to: 
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One possible orthogonal basis for the residuals is: 

 

 

3 4 5 6 7

0 0 1 3 5

0 1 1 3 6

1 2 0 4 3
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0 0 1 3 5
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Y can then be determined as Y = a + bT+E = a + bT + iO3 + jO4 + kO5 + mO6 +  pO7,  where a, b are 

arbitrary, and i, j, k, m, p are determined by a search.  GetSDX() can be easily modified to accomplish this.  Instead of 

checking if i
2
+j

2
+k

2
+(i+j+k)

2
 = 4*mx

2
 ,  one forms iO3 + jO4 + kO5 + mO6 +  pO7, then codes and prints the 

autocorrelation and supporting calculations like standard deviations.  Six of the resulting data sets are given below: 

 

Choosing a= 2, b=4, i=1, j=0, k=0, m=0, p=0 gives the data set below with a  regression equation: Ŷ=2+4X , 

and residuals E:  

 

T          YT       T T
ˆE=Y -Y     

1           6             0 

2          10            0 

3          15            1 

4          16           -2 

5          23            1 

6          26            0 

7          30            0. 

 

Let  E1 be the first (n-1) components of E and let E2 be the last (n-1) components of E,  then the 

autocorrelation is corr(E1,E2). 

 

1 2

0 0

0 1

1 2
E E .

2 1

1 0

0 0

   
   
   
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    
   
   
   
   

 

 

Thus:  1E =0 ,  2E =0 ,  
1

1E    
2

1E  , the autocorrelation is corr(E1,E2)= -2/3=-.666667. 
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Choosing a= 5, b=2, i=0, j=0, k=0, m=2, p=0 gives a second data set: 

 

Y
T
 = {13, 15, 3, 5, 7, 23, 25},  regression equation: Ŷ=5+2X ,  residuals:  

 

E
T
 =  {6, 6, -8, -8, -8, 6, 6},   1E =-1 ,  2E =-1 , 

1
7E  , 

2
7E  , and the autocorrelation is corr(E1,E2)= 

1/3=.333334. 

 

Choosing a= 1, b=3, i=4, j=0, k=-3, m=1, p=0 gives a third data set: 

 

Y
T
 = {4, 13, 10, 1, 16, 25, 22},  regression equation: Ŷ=1+3X ,  residuals:  

 

E
T
 =  {0, 6, 0, -12, 0, 6, 0},   1E =0 ,  2E =0 , 

1
6E  ,

2
6E  ,and the autocorrelation is corr(E1,E2)= 0. 

 

Choosing a= 3, b=5, i=-2, j=-3, k=-6, m=0, p=0 gives a fourth data set: 

 

Y
T
 = {2, 16, 22, 27, 20, 42, 32},  regression equation: Ŷ=3+5X ,  residuals:  

 

E
T
 =  {-6, 3, 4, 4, -8, 9, -6},  1E =1,  2E =1 , 

1
6E  , 

2
6E  , and the autocorrelation is corr(E1,E2)= -77/108=    

-.712963. 

 

 

Choosing a= -1, b=1, i=1, j=1, k=0, m=0, p=0 gives a fifth data set: 

 

Y
T
 = {0, 2, 1, 1, 7, 4, 6},  regression equation: Ŷ=-1+X ,  residuals:  

 

E
T
 =  {0, 1, -1, -2, 3, -1, 0},  1E =0 ,  2E =0 , 

1
8 3E  , 

2
8 3E  , and the autocorrelation is corr(E1,E2)= -.5 

 

 

Choosing a= 25, b=-2, i=5, j=-3, k=6, m=-2, p=0 gives the sixth data set: 

 

Y
T
 = {23, 6, 38, 15, 22, 4, 11},  regression equation: Ŷ=25-2X ,  residuals:  

 

E
T
 =  {0, -15, 19, -2, 7, -9, 0},   1E =0 ,  2E =0 , 

1
12Es  , 

2
12Es  , and the autocorrelation is corr(E1,E2)= -5/9=   

-.555556 

 

 

CONCLUSIONS 

 

With a small amount of work one can generate a large number of data sets with integer standard deviations, 

integer regression coefficients, and correlations that are rational numbers. 
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APPENDIX 

 

Code Set #1 

 

The first code set generates deviations giving integer values of the standard deviations, σx for the case n=4:  

 

Sub GetSDX() 

Dim i As Integer, j As Integer, k As Integer 

Dim count As Integer 

 

count = 1 

For i = -10 To 10 

For j = -10 To 10 

For k = -10 To 10 

For m = 1 To 40 

If i ^ 2 + j ^ 2 + k ^ 2 + (i + j + k) ^ 2 = 4 * m ^ 2  

 

Then 

 

count = count + 1 

Cells(count, 1).Value = i 

Cells(count, 2).Value = j 

Cells(count, 3).Value = k 

Cells(count, 4).Value = -i - j - k 

Cells(count, 6).Value = m 

End If 

Next m 

Next k 

Next j 

Next i 

End Sub   
 

Below is a screen shot of part of the output of GetSDX( ): 
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The data -10, -10, 10, 10 and -9, -9, 9, 9 are the same data set except for a scale factor.  It is possible to write 

code that will report only one set of this type of data.  The code is somewhat long and in our opinion not worth the 

effort. 

 

Code Set#2 

 

This set of code computes the sample standard deviation, sy for the case n=5: 

 

Sub GetSDY() 

Dim i As Integer, j As Integer, k As Integer 

Dim count As Integer 

 

count = 1 

For i = -10 To 10 

For j = -10 To 10 

For k = -10 To 10 

For m = 1 To 20 

If 36 * i ^ 2 + 2 * j ^ 2 + 18 * k ^ 2 = 4 * m ^ 2 

 

Then 

 

count = count + 1 

Cells(count, 11).Value = i 

Cells(count, 12).Value = j 

Cells(count, 13).Value = k 

Cells(count, 15).Value = m 

End If 

Next m 

Next k 

Next j 

Next i 

End Sub  
 

Below is a screen shot of part of the output of GetSDY( ): 
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Code Set#3 

 

The next program generates permutations of the integers 1, 2, 3, …, n with an algorithm found in Knuth[1]. It 

does so iteratively by starting with all permutations of the integers 1, 2, …, i-1 then using this set to generate all 

permutations of the integers 1, 2, …, i-1, i.   For each permutation a1a2a3…ai-1 on i-1 elements, form i others by 

inserting the number i in all possible places, obtaining:  i a1 a2 a3 … ai-1,    a1 i a2 a3 … ai-1,   a1, a2 i a3 … ai-1,   ……,    

a1 a2 a3 … ai-1 i. 

 

The code below generates the following sequence of permutations: (only n=1, n=2, and n=3 are shown) 

 

Permutations of one interger:        1 

 

Permutations of two integers:  2  1 

1  2 

Permutations of three integers: 3  2  1 

3  1  2 

2  3  1  

1  3  2 

2  1  3 

1  2  3 

 

The code uses array A for the set of permutations of 1, 2, …, i-1,and array B for the next set of permutations of 1, 2, 

…, i-1, i. 

 

Sub Perm() 

Dim n2 As Integer 

Dim n As Integer 

Dim A(1 To 120, 1 To 6) As Integer 

Dim B(1 To 720, 1 To 7) As Integer 

n = Cells(1, 1).Value        „ Read the value of n from the spread sheet 

Cells(4, 1).Value = 1        „ Start the algorithm with the permutations of one element(=1) 

ntot = 1 

 

For i = 2 To n 

ntot = ntot * i                      „ ntot is the total number or permutations of  i elements  

ntotpre = ntot / i                 „ ntotpre is the total number or permutations of  i-1 elements  

 

For j = 1 To ntotpre 

For m = 1 To i - 1 

A(j, m) = Cells(3 + j, m).Value    „ Read the current set of permutations from the spreadsheet 

Next 

Next 

 

For j = 1 To ntotpre              „ Generate permutations of the form:   i a1 a2 a3 … ai-1  

B(j, 1) = i                               „ Put i into first column of B, A into last i-1 columns of B  

For m = 1 To i 

B(j, m + 1) = A(j, m) 

Next 

Next 

 

For k = 2 To i - 1                „ Generate permutations of the form:  a1 i a2 a3 … ai-1,    

For j = 1 To ntotpre              a1, a2 i a3 … ai-1, …  

For m = 1 To k - 1 
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B(j + (k - 1) * ntotpre, m) = A(j, m)      „ Put the first k-1 columns of A in B  

Next 

B(j + (k - 1) * ntotpre, k) = i                  „ Put i into the k-th column of B 

For m = k + 1 To i 

B(j + (k - 1) * ntotpre, m) = A(j, m - 1)      „ Put the last i-k columns of A into the 

Next                                                               „ last i-k columns of B 

Next 

Next 

 

For j = 1 To ntotpre                    „ Generate permutations of the form:  a1 a2 a3 … ai-1 i.  

For    m = 1 To i                          „ Put A into first i-1 columns of B, put i into i-th column 

B(j + (i - 1) * ntotpre, m) = A(j, m)       „ of B 

Next 

B(j + (i - 1) * ntotpre, i) = i 

Next 

 

For j = 1 To ntot                           „ Print the new set of permutations B into the spreadsheet 

For m = 1 To i 

Cells(3 + j, m).Value = B(j, m) 

Next 

Next 

Next 

Cells(2, 2).Value = ntot 

End Sub 

 

Below is a screen shot of part of the output of the Macro  Perm( ):  

 

 

 
 

 


